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Abstract14

This paper analyzes the call admission problem on grids, where a central authority receives15

requests that two of the computers in the network arranged as a grid structure want to com-16

municate. The central authority can then, for every request, either satisfy it by establishing17

one of the possible connections in the grid, or reject the request. Thereby, the requests have to18

be answered in an online fashion, every connection is permanent, and connections have to be19

edge-disjoint. We are particularly interested to examine how much information about the future20

the central authority needs in order to compute an optimal solution or a solution of some given21

quality compared to the optimal solution. Therefore, the central authority can read an arbitrary22

number of bits from a tape providing the most helpful bit string, called advice.23

Our results show that, without advice, the central authority cannot perform satisfactorily24

well, and we establish a lower bound linear in |E| for the number of advice bits needed for near-25

optimal solutions, where |E| denotes the number of edges in the grid. Furthermore, concerning26

optimality, we were able to prove nearly tight bounds of at least 0.94|E| and at most 3|E| advice27

bits. In addition, we state another upper bound in the number of requests k and the number of28

vertices |V | in the grid graph of dlog2(5) · k + log2(3) · |V |e+ d2 log2(k)e bits of advice, which is29

stronger for a small number of requests.30

A similar problem concerning a path graph as underlying network served as inspiration for31

this paper, and has already been studied in great detail.32
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analysis35

Digital Object Identifier 10.4230/LIPIcs...36

1 Introduction37

Imagine you are the administrator of a computer network, where each computer can request38

a connection to any of the other ones from a central authority, which immediately either39

satisfies the request or rejects it. Of course the different properties of network topologies are40

manifold, and the priorities among them are not the same in every case. However, your main41

concern is to be able to establish connections for the largest possible portion of requests.42

As conventional in computer science, we examine the worst case, i.e., the case where the43
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Figure 1 A path network containing five computers.

Figure 2 A (2 × 4)-grid network.

requests are the most unfavorable. Hence, given a specific topology, the question of how44

good this topology suits our problem arises.45

Now, for simplicity let us assume that once a connection between two computers has been46

established, the connection is fixed, i.e., it does not get terminated or changed in any way.47

Further, every wire can only be utilized for one connection, so there are no two connections48

sharing a wire. In the literature, this informally described setting is known as the disjoint49

path allocation problem or as the call admission problem.50

So far, the disjoint path allocation problem has been predominantly studied on simple51

paths as network topologies (see Figure 1). Thus, in this paper we use this term when52

referring to the problem on a path network, although the disjoint path allocation problem53

actually comprises the complete variety of network topologies. Based on the research on path54

networks, we aim to analyze the problem on grid networks, and for distinction we specify55

this as the call admission problem on grids (see Figure 2).56

Note that some network topologies naturally perform well without the central authority57

being remarkably powerful, e.g., for the complete graph as underlying network, obviously58

all requests can be satisfied by just using the direct connection between the computers in59

every request. Unfortunately, without any further assumptions on the power of the central60

authority besides being an algorithm, it can be proven that both, paths and grids, as network61

perform quite badly, so the results are not very satisfactory. Therefore, the concept of advice62

has been introduced. There, the central authority has access to some kind of mighty oracle63

that knows the future requests and can transmit any information, called advice, to the64

central authority. Deploying this model, we are not longer restricted to just state that some65

ratio of satisfied requests cannot be achieved, but can give a precise measure of how much66

information the central authority has to obtain from the oracle in order to be able to reach67

exactly this ratio of satisfied requests. Or less formally, if you are not able to utilize your68

network as desired, at least you want to identify how much hidden information keeps you69

from having a considerably successful central authority. Let us remark that in general, even70

knowing the amount of information, still which information this is might remain undiscovered.71

However, usually upper bounds on the amount of advice are proved in a constructive way, so72

coming back to practical applications, there may even be a possibility to gather (some of)73
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this information (e.g., some properties about the order of requests or about the position of74

the computers entailed in the requests might be detectable).75

Since the lack of knowledge about the future impeding a reasonably good solution unifies76

a lot of online problems, suitable complexity models have been invented: The fundamental77

idea of comparing the solutions of a specific algorithm with the best possible solutions has78

been introduced by Sleator and Tarjan [12], and the worst case ratio between them is called79

the competitive ratio. Further, the notion of advice complexity is due to Dobrev et al. [6].80

However, the model has some weaknesses because the advice is given in a piecewise manner,81

with pieces of a finite length, which results in additional information the algorithm can82

exploit, but that is not accounted for by the model. Therefore, the model we consider in83

this paper is a refined version proposed by Hromkovič et al. [9] and Böckenhauer et al. [3].84

Using this model, various online problems have already been studied, including the ski rental85

problem, online vertex cover problem, online independent set problem, as well as the problem86

motivating this paper, the disjoint path allocation problem [6, 5, 3].87

For the latter, without the help of advice, no deterministic online algorithm can achieve88

a constant competitive ratio. More precisely, measured in the length l of the path of the89

network, every online algorithm accepts in the worst case at most 1
l of the requests that90

are satisfied by an optimal algorithm [4]. Even in case we allow for a constant number of91

unsatisfied requests that are ignored for the competitive ratio, Komm [10] proved that every92

algorithm is at least
√
l-competitive, i.e., accomplishes at most a ratio of 1√

l
of granted93

requests. Similarly, with regards to the total number of requests k, Böckenhauer et al. [3]94

already showed in their initial paper about this model that no algorithm is better than95

(k −O(1))-competitive, or in case of a randomized online algorithm (k4 −O(1))-competitive.96

In the context of deterministic online algorithms with advice, l − 1 bits of advice are97

both necessary and sufficient in order to compute an optimal solution concerning the disjoint98

path allocaiton problem [1]. Digressing from strict optimality, for an algorithm to obtain a99

competitive ratio of c, again Böckenhauer et al. [3] established that at least k+2
2c − 2 ∈ Ω(kc )100

advice bits have to be read. Later, Boyar et al. [5] proved this to be asymptotically tight, i.e.,101

Θ(kc ) bits of advice are necessary and sufficient for being c-competitive,. As they were able102

to prove similar results for various online problems, based on this, they introduced the first103

online advice complexity class, analogously to those prevailing in time and space complexity.104

Now, for the call admission problem on grids, we aim to generalize some of the bounds105

for the disjoint path allocation problem and to establish further ones. Since, in contrast to106

a path network, on a grid network there are multiple possible paths (or even walks) that107

can be deliberated to satisfy a request between two computers, the online algorithm has108

significantly more freedom to build its solution. At the same time, there are far more possible109

requests that contradict each other, so considering the worst case, the construction of a110

solution might be remarkably more complicated. Thus, it is not clear whether more or less111

advice is needed in order to ensure some competitive ratio in comparison to the disjoint path112

allocation problem.113

However, this paper will present proofs that also on the grid G = (V,E), indeed advice114

is needed to achieve a competitive ratio constant in the grid size, and that for optimality115

at least almost the number of edges |E| of advice bits are necessary. In addition, we show116

a lower bound on the number of advice bits necessary for non-optimal algorithms with a117

certain competitive ratio.118

Concerning upper bounds, we prove that for short, horizontally or vertically aligned119

requests less than |E| advice bits are sufficient to compute an optimal solution. In general,120

no more than 3|E| bits of advice are needed. Similarly, (partially) measured in the number121
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of requests k, roughly log2(5) · k + log2(3) · |V | bits of advice suffice.122

Therefore, let us continue with formalizing the mentioned concepts and the problems in123

question.124

2 Preliminaries125

This chapter serves to introduce our basic conventions concerning mathematical notation,126

and to explain all definitions necessary to follow the proofs in Section 3.127

2.1 Mathematical Notation128

Throughout this paper, N is defined as the set of positive integers, i.e., N = {1, 2, 3, . . .}. For129

a set as an argument, | · | stands for its cardinality (and otherwise for the absolute value).130

The exponentiation of a set refers to the cartesian power of the set, e.g., N3 = N×N×N.131

Following common conventions, G = (V,E) denotes a graph (in most cases a grid), with132

vertex set V and edges E. If these sets are not specified in the definition of a graph G, V (G)133

or E(G) are the sets of vertices or edges, respectively. Hence, |V (G)| denotes the number of134

vertices and |E(G)| denotes the number of edges in a graph G. If G is a path, then |E(G)| is135

its length. The degree of a vertex v is d(v), the maximum degree of a graph G is ∆(G), the136

chromatic number, i.e., the minimum number of colors needed in a proper vertex-coloring of137

G, is denoted by χ(G), and ω(G) is the maximum clique size. Grid graphs will be formally138

defined later, but let us already note that usually m and n refer to the number of vertices139

in the vertical or horizontal direction, respectively. Slightly abusing notation, requests are140

denoted by (u, v) instead of {u, v}, in order to distinguish them from edges, so in this context141

exceptionally (u, v) = (v, u). Furthermore, for functions f : X → Y and g : X → Y for some142

sets X,Y ⊆ R, the Landau notation is used in the following sense:143

f(x) ∈ O (g(x))⇐⇒ lim sup
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ <∞144

f(x) ∈ o (g(x))⇐⇒ lim
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ = 0145

f(x) ∈ Ω (g(x))⇐⇒ lim inf
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ > 0146

f(x) ∈ Θ (g(x))⇐⇒ f(x) ∈ O (g(x)) ∧ f(x) ∈ Ω (g(x))147
148

2.2 Online Problems and Online Algorithms149

We assume that the concept of offline problems and offline algorithms is known to the audience150

(otherwise see Hromkovič [8]), so we omit their definition and start directly with their online151

counterparts. Some of the definitions are based on Komm [10], which we recommend for152

further explanations.153

The essential underlying concept of the online setting is that an online algorithm receives154

a request ri of an instance of the appropriate online problem, and has to answer this request155

with an answer ai before it gets the next one. So viewing the communication, requests and156

answers strictly alternate. Of course, at any point in time the online algorithm is only aware157

of the requests revealed so far without any knowledge of the future, so a response ai may158

only depend on r1, r2, . . . , ri. In order to formalize this, an online problem has to define the159

feasible sequences of requests and the corresponding suitable sequences of answers.160
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I Definition 1 (Online Problem). An online problem Π consists of a set of instances I(Π)161

and, for every such instance I ∈ I(Π), a set of feasible solutions S(I). An instance I is a162

sequence of requests (r1, r2, . . . , rk), and likewise a corresponding solution S ∈ S(I) is defined163

to be a sequence of answers (a1, a2, . . . , ak), for some k ∈ N.164

For reasons of readability and convenience, we often hide the dependency on Π and simply165

write I instead of I(Π), since Π should be clear from the context, or we define I to be a166

restricted set of instances we consider for a proof.167

I Definition 2 (Online Optimization Problem). An online optimization problem Π is an online168

problem together with a goal function and a measurement function. The goal function is169

either max{·}, in this case Π is an online maximization problem, or min{·}, then Π is called170

an online minimization problem. The measurement function can be any function f(I, S) ∈ R,171

where I ∈ I(Π) and S ∈ S(I), and is referred to as gain(I, S) if the objective is to maximize,172

and as cost(I, S) in case of an online minimization problem.173

Given some I ∈ I(Π), Opt(I) ∈ S(I) is defined to be an optimal solution if and only174

if gain(I,Opt(I)) = max{gain(I, S) | S ∈ S(I)}, or cost(I,Opt(I)) = min{cost(I, S) | S ∈175

S(I)}, respectively.176

Consequently, the term optimal algorithm will be used for an algorithm that computes177

an optimal solution on every instance I ∈ I(Π), and hence we abbreviate it with Opt. Since178

we mostly argue about the solution Alg(I) of a concrete deterministic algorithm Alg on179

some instance I, we usually write gain(Alg(I)) or cost(Alg(I)), instead of gain(I,Alg(I))180

and cost(I,Alg(I)). Besides, throughout this paper we actually only examine maximization181

problems in more detail, so we state the definitions concerning minimization problems rather182

for matter of completeness.183

As already mentioned in the introduction, the online problem that motivated the topic of184

this paper is called the disjoint path allocation problem, and its informal description will be185

made precise next. For this, note that the length of a path graph already defines the whole186

path graph (up to isomorphism).187

I Definition 3 (Disjoint Path Allocation Problem). The disjoint path allocation problem is188

an online maximization problem denoted by ΠDPA. The set of instances I(ΠDPA) consists189

exactly of all possible I = (r1, r2, . . . , rk), such that the first request r1 contains a length190

l ∈ N, which defines a path graph G = (V,E), and additionally, every request ri, 1 ≤ i ≤ k,191

consists of a pair of two vertices (ui, vi) ∈ V × V , ui 6= vi. Further, the pairs of vertices in192

the requests in I have to be pairwise distinct.193

We say that two requests r and r′ of I contradict if and only if the path p in G between194

the pair of vertices of r, and the path p′ in G between the pair of vertices of r′, are not195

edge-disjoint.196

A corresponding solution S = (a1, a2, . . . , ak) ∈ S(I) is a bit string, such that, for all i, j,197

1 ≤ i, j ≤ k, ai = 1 ∧ aj = 1 implies that ri and rj do not contradict.198

The measurement function returns the number of satisfied requests, i.e., f(I, S) = |{ai |199

1 ≤ i ≤ k ∧ ai = 1}|, where S = (a1, a2, . . . , ak) ∈ S(I).200

Sometimes, this problem is called the DPA problem or just DPA. In the following, we201

say that the requests of some instance I are asked, demanded or requested, and, if ai = 1 in202

some solution S = (a1, a2, . . . , ak) ∈ S(I), we say that the solution (or the algorithm that203

computes the solution) satisfies, grants, permits, accepts or admits the corresponding request204

ri. Otherwise, it gets rejected or similar.205
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Figure 3 The construction of a grid through the cartesian product of two paths pver and phor.

Since the next problem concerns more general graphs, we define the length of a request r206

to be the length of the shortest path between the pair of vertices in r, and conversely, such207

path which is not of minimal length is referred to as a detour.208

For a rigorous definition of the call admission problem on grids, we first define the209

underlying network on which we want to grant connections, the grid.210

I Definition 4 (Grid). For m,n ∈ N, an (m× n)-grid G = (V,E) is the cartesian product211

of two paths pver = (Vm, Em), and phor = (Vn, En), where Vk = {1, 2, . . . , k} and Ek =212

{{1, 2}, {2, 3}, . . . , {k−1, k}}. Therefore, V = {vi,j | (i, j) ∈ Vm×Vn} and E = {{va,b, vx,y} |213

(a = x ∧ {b, y} ∈ Em) ∨ (b = y ∧ {a, x} ∈ En)}.214

Note that pver is of lengthm−1 and phor is of length n−1. In illustrations and descriptions,215

v1,1 is chosen to be the lower-left corner, whereas vm,n is the upper-right corner, as Figure 3216

depicts.217

Similar to a path, obviously a grid is completely specified through the lengths m and n,218

and with this observation we have everything to define our primary object of study.219

I Definition 5 (Call Admission Problem on Grids). The call admission problem on grids220

(short CAPG) is an online maximization problem denoted by ΠCAPG. The set of instances221

I(ΠCAPG) consists exactly of all possible I = (r1, r2, . . . , rk), such that the first request r1222

contains two lengths m,n ∈ N, which define an (m× n)-grid G = (V,E). Additionally, every223

request ri, 1 ≤ i ≤ k, consists of a pair of vertices (ui, vi) ∈ V × V , ui 6= vi. Further, the224

pairs of vertices in the requests in I have to be pairwise distinct.225

We say a set of paths is contradicting if and only if the paths are not pairwise edge-disjoint.226

A set of requests {r′1, r′2, . . . , r′t} of I is contradicting if and only if there is no set of paths227

{p1, p2, . . . , pt} in G that is not contradicting, and such that pj is a path between the pair of228

vertices of request r′j , for 1 ≤ j ≤ t.229

A corresponding solution S = (a1, a2, . . . , ak) ∈ S(I) is an element from (P ∪{0})k, where230

P denotes the set of all paths in G, such that for all ai 6= 0, ai connects the vertices in ri231

and {ai | 1 ≤ i ≤ k ∧ ai 6= 0} is not contradicting.232
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. . .. . . . . .1 1 1 1 1

Figure 4 Illustration of a greedy online algorithm for DPA which satisfies the first request (in
blue) and has to reject all subsequent small requests of length 1.

The measurement function returns the number of satisfied requests, i.e., f(I, S) = |{ai |233

1 ≤ i ≤ k ∧ ai 6= 0}|, where S = (a1, a2, . . . , ak) ∈ S(I).234

While for the DPA problem it has been sufficient to state whether a request should be235

satisfied or not, because there is only one unique way to satisfy a request on a path, this is236

not the case for the call admission problem on grids. Here, for each of the respective requests,237

there may be multiple paths in the grid to grant it. Hence, if a solution would only contain238

whether a request has been satisfied or not, the algorithm would not need to fix any paths at239

all, but it only has to ensure the existence of some non-contradicting set of paths connecting240

the granted requests. However, thinking of the real-world scenario behind CAPG, it seems241

much more natural that the connection in the network should already be established and242

therefore be fixed from the time of acceptance.243

Besides, in some proofs we consider a (partial) solution in which the paths that satisfy244

some requests are already fixed and use the term contradicting to make clear that these fixed245

paths are not pairwise edge-disjoint.246

Now that we have seen two examples of online problems, we turn to online algorithms,247

which, given an instance of the respective online problem, compute some suitable solution.248

I Definition 6 (Online Algorithm). An online algorithm Alg for an online problem Π is an249

algorithm that, given an instance I = (r1, r2, . . . , rk) ∈ I(Π), computes a feasible solution250

Alg(I) = (a1, a2, . . . , ak) ∈ S(I), where ai may only depend on r1, r2, . . . , ri.251

For example, a greedy online algorithm Alg for the DPA problem on an instance I would252

check, for every request it receives, whether it contradicts any previously satisfied request253

and, if this is not the case, satisfies it. Or more formally, for an instance I = (r1, r2, . . . , rk),254

Alg would output the solution Alg(I) = (a1, a2, . . . , ak), where ai = 1 if and only if for all255

j < i, aj = 1 implies that ri and rj do not contradict.256

Note that for CAPG there is no unique greedy online algorithm Alg, since it is not clear257

which path should be used in order to satisfy a request. However, using any ordering Q of the258

paths in the grid, we could still define that Alg accepts a request ri using a path pi between259

its vertices if and only if pi is the first path in Q where {aj | 1 ≤ j < i ∧ aj 6= 0} ∪ {pi} is260

not contradicting.261

Consider an instance of DPA in which first a long request is asked and then this request262

gets partitioned into requests each of length 1 which are demanded next. The greedy263

algorithm Alg from above would satisfy the first request and then all the other requests264

have to be rejected because they contradict (see Figure 4).265

Intuitively, Alg does not seem to perform very well because, on some instances, it266

obviously satisfies only very few requests, and in our intuitive understanding of “performing267

well”, we compare it to an optimal solution that might be able to grant many more requests,268

as in this example all small requests. This notion of performance is captured by the following269

definition.270

IDefinition 7 (Competitive Ratio). Let Alg be an online algorithm for an online optimization271

problem Π. Then, for c ∈ R, c ≥ 1, Alg is c-competitive if there is a constant α ≥ 0, such272
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that for all I ∈ I(Π)273

gain (Opt(I)) ≤ c · gain (Alg(I)) + α274
275

in case Π is a maximization problem, and276

cost (Alg(I)) ≤ c · cost (Opt(I)) + α277
278

if Π is a minimization problem. In case this holds for α = 0, Alg is called strictly c-279

competitive. The competitive ratio of Alg then is cAlg = inf{c |Alg is c-competitive}.280

The additive constant α only serves to compensate for some constant advantage of the281

optimal algorithm, because we are interested in the asymptotic correlation, rather than in282

the ratio in some corner cases.283

For the ease of explanation, we will at times slightly abuse terminology and also speak284

about the competitive ratio as the performance of an algorithm on a single, specific instance.285

Moreover, if there is no constant c, such that some algorithm is c-competitive, in some286

literature this is expressed as being “not competitive” or that “there is no competitive ratio”,287

or similar [10, 4]. However, even if c = c(·) is a function, e.g., of the grid size or the number of288

requests, the ratio concerning an optimal solution can still be of interest, so in the respective289

cases we prefer to formulate this as something in the sense of the algorithm is c(·)-competitive.290

Especially since not all papers were mindful of this issue, let us remark that in case291

that the grid size itself is not part of the instance, α can be a constant with respect to the292

instances, and yet depend on the grid size. Then, for a given grid size there are only finitely293

many instances, and thus, there always would exist a sufficiently large constant α, such that294

the algorithm is 1-competitive, independently of what the algorithm actually does. This is295

the reason for the length of the path or the size of the grid, respectively, to be contained in296

the first request in the definitions of DPA and CAPG.297

2.3 Online Algorithms with Advice298

The two considered online problems, and almost all others of interest, seem to be too hard299

to find any online algorithm that achieves a reasonably decent competitive ratio, let alone300

optimal solutions. But not the lack of our abilities constitutes the barrier. Instead, there301

rather simply do not exist satisfactory ones, even independently of the computational power302

at disposal. Hence, classical measures of complexity do not really capture the hardness303

of these problems and thus are not as expressive as desired. What is inevitably needed304

to compute an adequate solution is more information about the upcoming requests of the305

future when deciding on the current one. Therefore, we introduce the concept of advice,306

which brings a string into play that provides the most helpful information about the (future)307

requests to our online algorithm. Basically, our online algorithms have a binary string at308

hand from which they can read bits and then decide accordingly. If this string, called advice309

(string), is designed mindful of the particular algorithm as well as the complete instance310

that will be provided, we obviously can improve tremendously. Thus, very naturally we will311

measure the hardness of the problem in the number of bits of advice an algorithm has to read,312

i.e., the amount of needed information about the future, in order to obtain some competitive313

ratio, instead of time or space demands of the algorithm. Obviously, then, in contrast to314

resources of time or space, given enough information, an optimal solution is computable, so315

this alternative measure of complexity is sensible for online problems.316

Note that we define this setting only for optimization problems, since clearly the concept317

of advice is primarily meaningful in the context of some desired quality of the solution.318
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So far, we defined the competitive ratio as the infimum ratio over all instances I ∈ I, but319

since, as we will see, the advice is chosen by some oracle, we now let an adversary choose the320

instance, so we have “good” and “evil” counterparts which make explanations much more321

illustrative. If the adversary is powerful enough to choose the worst instance I ∈ I, this then322

is the same as quantifying over all instances. The appropriate adversary model is called the323

oblivious adversary.324

I Definition 8 (Oblivious Adversary). The oblivious adversary knows the online optimization325

problem Π, the online algorithm Alg with advice, and the oracle. In particular, it is aware326

of the given advice and hence of all deterministic actions of Alg. Still, the adversary has327

no knowledge about the values on the random tape from which Alg can read bits in case328

Alg is a randomized algorithm.1 The oblivious adversary is assumed to have unbounded329

computational power. Under these assumptions, the adversary chooses one instance I ∈ I(Π)330

such that the competitive ratio of Alg on this instance I is maximized.331

Formally, the adversary chooses the complete instance in advance of any asked or served332

requests. Nevertheless, it knows the algorithm which the instance will be handed to, so in the333

deterministic case, for a more intuitive description, to a certain extent, this can be seen as an334

interactive game where the adversary reacts to the actions of the algorithm and constructs335

the instance alongside. However, in randomized scenarios, or in reduction proofs where an336

algorithm impersonates the role of the adversary, we have to consult the precise definition.337

Next, we specify the capabilities of the good pendant, the oracle.338

I Definition 9 (Oracle). The oracle knows the online optimization problem Π, the online339

algorithm Alg with advice, and the complete instance I ∈ I(Π) which is given to Alg.340

Still, the oracle has no knowledge about the values on the random tape from which Alg341

can read bits in case Alg is a randomized algorithm. The oracle is assumed to have infinite342

computational power. Under these assumptions, the oracle writes an infinite advice string343

on the advice tape of Alg, such that the competitive ratio of Alg on I is minimized.344

As already indicated, an online algorithm with advice needs access to an additional tape345

on which the oracle writes the advice string. Except for being able to read and use its advice,346

the algorithm is subject to the same conditions as before.347

I Definition 10 (Online Algorithm with Advice). An online algorithm Alg with advice for348

an online optimization problem Π is an algorithm that has access to an infinitely long binary349

advice tape with advice bits b1, b2, . . . of which Alg can read an arbitrary long, but finite350

prefix. Given an instance I = (r1, r2, . . . , rk) ∈ I(Π), Alg then computes a corresponding351

solution Alg(I) = (a1, a2, . . . , ak) ∈ S(I), where ai may only depend on r1, r2, . . . , ri and352

the bits of advice b1, b2, . . . , bqi
it read so far. If Alg reads at most the first q(·) bits of353

advice, q(·) is the advice complexity of Alg.354

Note that q(·) can be a function of any parameter of the instance (or even the whole355

instance), but usually, we measure it either in the number of requests of the instance, or in356

the size of the considered graph G, e.g., in |V | or |E|. Of course, we are interested in finding357

an advice complexity that is as small as possible in the respective parameter.358

By defining the advice tape of an algorithm Alg to be infinitely long, Alg cannot extract359

any information from the length of the advice string, and thus, the number of advice bits360

1 For a formal definition of randomized algorithms see [10]
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Figure 5 Example instance for DPA on a path of length 7 (in gray). If 0100101 is the prefix on
the advice tape, Alg satisfies the blue requests, which constitute one of the optimal solutions.

read by the algorithm measures the whole information that Alg needs about the future361

requests.362

Of course, the ulterior motive is to state results about advice complexity in the context363

of some achieved competitive ratio, and obviously a good competitive ratio and little amount364

of advice compete against each other in most cases. Therefore, let us define the competitive365

ratio for online algorithms with advice.366

I Definition 11 (Competitive Ratio with Advice). Let Alg be an online algorithm with advice367

for an online optimization problem Π. Then, for c ∈ R, c ≥ 1, Alg is c-competitive if there368

is a constant α ≥ 0, such that, for every instance I ∈ I(Π) chosen by the oblivious adversary,369

and an advice string b1, b2, . . . chosen by the oracle,370

gain (Opt(I)) ≤ c · gain (Alg(I)) + α371
372

in case Π is a maximization problem, and373

cost (Alg(I)) ≤ c · cost (Opt(I)) + α374
375

if Π is a minimization problem. In case this holds for α = 0, Alg is called strictly c-376

competitive. The competitive ratio of Alg then is cAlg = inf{c |Alg is c-competitive}.377

Here the same terminology conventions as for the competitive ratio without advice apply.378

For a better comprehension, let us examine another example for DPA. Consider an algorithm379

Alg with advice that, on every request ri, reads one bit bi of the advice tape and, if bi = 1,380

it satisfies ri (recall that for DPA there is only one unique possibility to grant a request), and381

else Alg rejects ri. We know that the oracle provides the best possible string of advice, so we382

are safe to assume that, according to some optimal solution S, it writes a 1 for every request383

that is granted in S and a 0 for every non-satisfied request on the advice tape, since then384

Alg obviously computes the optimal solution S, and thus is 1-competitive (see Figure 5).385

If k is the number of requests in an instance, Alg reads exactly k bits of advice and386

the advice complexity is therefore q(k) = k. Although not convenient in this case, we could387

measure the advice complexity with respect to the length l of the underlying path as well:388

Since all requests are pairwise distinct, there are at most l requests of length 1, l − 1 of389

length 2 and so on, i.e.,
∑l
i=1 i = l(l+1)

2 requests in an instance. Hence, with respect to l,390

the advice complexity is q(l) = l(l+1)
2 .391

2.4 Facts and Remarks392

In particular, there are some small gadgets that will repeatedly come to use, so we want to393

introduce them here in order to safely assume they are known in the following proofs.394

I Fact 1. In an (m× n)-grid G = (V,E), there are |V | = mn vertices and |E| = m(n− 1) +395

n(m− 1) edges, so |E| = 2|V | −m− n.396
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Moreover, for vertex-coloring a clique properly, all vertices in the clique have to be colored397

using pairwise distinct colors, and conversely, for a vertex v of degree d(v), we can color all398

adjacent vertices with d(v) pairwise distinct colors and v itself with one more. Therefore, we399

obtain the subsequent fact.400

I Fact 2. For every graph G we have ω(G) ≤ χ(G) ≤ ∆(G) + 1.401

I Remark. If some lower bound only holds for finitely many instances, then clearly the lower402

bound does not grow in e.g., the grid size or the number of requests. On the other hand,403

since there are only finitely many instances for every grid size (or number of requests), in404

case that it holds for infinitely many instances, there is no largest grid size (or number of405

requests) for which the lower bound applies, so the adversary can choose an arbitrarily large406

grid size (or number of requests) for which the lower bound holds. Therefore, in order to be407

able to establish some lower bound as a function of the grid size (or the number of requests),408

it is sufficient to prove it for any infinite subset of instances. In particular, we can, without409

loss of generality, make assumptions on the parity of m and n, the ratio between m and n,410

and we may expect the grid or the number of requests to be sufficiently large. Thereby we411

avoid a lot of tedious rounding and do not need to consider every corner case.412

I Remark. Occasionally, we want to pass some value x ∈ N to an algorithm Alg using parts413

of the string of advice. We can encode x in binary with dlog2(x)e bits. However, just writing414

this encoding on the advice tape is usually not sufficient, since Alg cannot know where415

the encoding on the advice tape ends, so it cannot decode the value (recall that the tape is416

considered to be infinite). There are multiple ways to circumvent this issue, for example, the417

oracle can use the first dlog2(x)e odd positions on the advice tape to encode x, but write a 0418

at the even positions in between, meaning that the encoding still continues, and a 1 behind419

the encoding, indicating its end. Then, Alg is able to reconstruct x reading 2dlog2(x)e bits420

of advice [10].421

3 Results422

3.1 Lower Bounds423

First, we focus on lower bounds and establish some for CAPG that are similar to those for424

DPA, just for general grid sizes. Of course, since paths are corner cases of grids, DPA is a425

special case of CAPG, and since the adversary can choose the grid size, the respective lower426

bounds concerning DPA already apply for CAPG as well. However, we are interested in427

learning which lower bounds hold for general grids, and how they depend on the grid sizes.428

In fact, with some amount of additional reasoning, most of the examined lower bounds can429

be generalized to arbitrary grid sizes.430

Komm [10] has already proved that there is no online algorithm with a constant competitive431

ratio for DPA, i.e., for CAPG on a (1×(l+1))-grid. The idea of the proof is to first request up432

to
√
l many requests of the form (v1,1, v1,

√
l+1), (v1,

√
l+1, v1,2

√
l+1), . . . , (v1,(

√
l−1)
√
l+1, v1,l+1),433

just until one has been granted.2 If none at all is granted, the adversary stops and the434

competitive ratio cannot be constant, since the maximal number of requests grows in l. In435

case one of these requests has just been satisfied, the adversary partitions this request into436 √
l further requests, each of length 1 (see Figure 6). So, if (v1,j , v1,

√
l+j) has been granted,437

then the adversary asks for (v1,j , v1,j+1), (v1,j+1, v1,j+2), . . . , (v1,
√
l+j−1, v1,

√
l+j). All these438

2 Technically speaking, the first request additionally contains the size of the grid.
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Figure 6 Example of a path of length 16, where the third request has been granted (blue).
Black lines depict non-satisfied requests and dotted lines indicate those which have not been asked
anymore.

row
3
2
1

Figure 7 Instance on a grid of size 3 × 257.

requests cannot be satisfied anymore, because they overlap with the previously satisfied439

request. Hence, only one request gets satisfied by any given online algorithm. However,440

given this instance, one could have just permitted the requests of length one (and all non-441

contradicting requests, if present). Hence, again, the competitive ratio is increasing in l and442

therefore, in conclusion, there is no constant competitive ratio in this setting.443

Now, this idea can be extended to grids very naturally: Assume a grid of size (k× (l+ 1))444

is given, for some constant k ∈ N. Then, we just play the game recursively on every row of445

the grid. Therefore, we partition the requests into phases P1, P2, . . . , Pk+1. First, in phase446

P1 the adversary asks at most
√
l many requests of length

√
l on the first row, until one447

of them is accepted, just like before. So explicitly the requests are given by (v1,1, v1,
√
l+1),448

(v1,
√
l+1, v1,2

√
l+1), . . . , (v1,(

√
l−1)
√
l+1, v1,l+1). However, note that in contrast to before, there449

are various walks of different lengths to satisfy the request, but that of minimal length is450

unique. Then, for phase Pi, where 1 < i ≤ k, we pretend the grid has diminished in size,451

in the sense that all rows below do not exist anymore and the length of the grid is only452

the length of the previous request. More rigorously, let the previously satisfied request of453

phase Pi−1 start at vi−1,j and have length li−1. Then, this corresponds to a grid of height454

k − (i− 1) and length li−1, so the requests (v1,1, v1,
√
li−1+1), (v1,

√
li−1+1, v1,2

√
li−1+1), . . . ,455

(v1,(
√
li−1−1)

√
li−1+1, v1,li−1+1) on this new grid constitute phase Pi (see Figure 7). Since so456

far in every phase the length has been diminished by a square root, li−1 = l1/2i−1 , and in457

addition, all requests of this phase are in row i of the actual grid, this easily translates to458

the original parameters. In each phase, if one request gets admitted, all further requests of459

the phase are suspended and the next phase takes over. In case that in one phase none of460

its requests are satisfied, the whole procedure stops immediately. Note that in phase Pk we461

reduced the situation to that on the path, so finally, in phase Pk+1 the adversary demands462

all lk = l
1

2k many requests of length one, which cover the same part of the grid as in the463

previous phase, i.e., if the previously satisfied request has begun at vk,j , then all (vk,j , vk,j+1),464

(vk,j+1, vk,j+2), . . . , (vk,lk+j−1, vk,lk+j) are requested.465

Assume the procedure stops early, videlicet, in some phase Pi, i ∈ {1, 2, . . . , k}, none of466

the requests have been granted. Then, obviously fewer than k requests have been permitted467

altogether, but in phase Pi alone, there have been li = l
1

2i requests which could have been468

accepted in retrospect, so since k is constant but li grows in l, no constant competitive ratio469

can be reached in this case. On the other side, if in every phase Pi, i ∈ {1, 2, . . . , k}, one470

request has been satisfied, no request of phase Pk+1 can be permitted. This is because in all471

of the k rows of the grid, one request, which overlaps the requests of Pk+1 column-wise, has472

already been satisfied, so all vertical edges between the endpoints of the requests of Pk+1 are473
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already occupied. Hence, k requests have been granted, but more than lk+1 could have been474

satisfied, so again, there is no algorithm that achieves a constant competitive ratio.475

Before we state a formal proof of a more general statement, note that this argument476

would not hold for grids that grow arbitrarily in both dimensions, since then, the number of477

satisfied requests is not bounded by a constant, but instead grows in l as well, and perhaps478

even fast enough to achieve a constant competitive ratio. Even worse, if k(l) grows too479

fast, we might not be able to ask a request on every row at all, since the lengths of the480

requests diminish considerably from row to row. However, heretofore, we did not exploit our481

freedom of choice to the full extent, regarding how many requests are demanded in each row,482

and closely tied, of which length each request is. Thus, in the following we will attempt to483

thoroughly exhaust the underlying concept. Notice, therefore, that the main focus has to484

lie on meeting two crucial conditions: First, at the end there have to be mutually exclusive485

requests, such that any online algorithm cannot satisfy future requests if it has already taken486

some other ones before. Secondly, the number of requests in each row has to be increasing in487

l, since we have to cover the case that none of the requests in some row gets satisfied. More488

precisely, we need k(l) + 1 increasing functions, one for each row, plus one for the last phase.489

Be aware that from row to row the region in which previous requests have been satisfied gets490

partitioned further. Therefore, in order to facilitate this for the next rows, the length of each491

request has to be increasing sufficiently in l as well, because otherwise their number cannot492

grow in l anymore.493

I Theorem 12. If k(l) ∈ o(log(l)) for some k : N→ N, the competitive ratio of every online494

algorithm without advice for CAPG on a (k(l)× (l+ 1))-grid is at least c ∈ Ω(l
1

k(l)+1 · k(l)−1).495

Proof. First, note that the length of the grid is l, and by assumption k(l) + 1 ∈ o(log(l)).496

Hence, there is an increasing function f(l) which satisfies f(l) ·(k(l)+1) = log(l), so we obtain497

l = exp(f(l) · (k(l) + 1)) = exp(f(l))k(l)+1 and define the right-hand side to be c(l, k+ 1) (for498

convenience and readability, henceforth we write k instead of k(l) if possible). Furthermore,499

let Alg be some deterministic online algorithm for CAPG.500

Now, the adversary is able to design a set of instances I, such that each instance I ∈ I501

consists of phases P1, P2, . . . , Pk+1 which are constructed in the following manner: In phase502

P1 the adversary asks from the left to the right c(l, 1) many consecutive requests each of503

length c(l, k) on the first row (where the size of the grid is included in the first request),504

i.e., (k, l + 1, v1,1, v1,c(l,k)+1), (v1,c(l,k)+1, v1,2c(l,k)+1), . . . , (v1,(c(l,1)−1)c(l,k)+1, v1,c(l,k+1)+1),505

as long as Alg does not satisfy any of those requests. As soon as one request has been granted,506

the adversary aborts the current phase and starts with the next one. Likewise, assuming in507

Pi−1 the request starting at vi−1,j has been granted, the adversary partitions the part of the508

row covered by the previously satisfied request further, such that in phase Pi where 1 < i ≤ k,509

it demands the c(l, 1) many requests of length c(l, k− i+ 1) of the form (vi,j , vi,c(l,k−i+1)+j),510

(vi,c(l,k−i+1)+j , vi,2c(l,k−i+1)+j), . . . , (vi,(c(l,1)−1)c(l,k−i+1)+j , vi,c(l,k−i+2)+j). Again, once Alg511

satisfies one of these requests, Pi is aborted and the procedure continues with phase Pi+1. In512

Pk+1 the adversary asks for all c(l, 1) many requests of length c(l, 0) = 1 on the same row as513

in phase Pk, that is, (vk,j , vk,j+1), (vk,j+1, vk,j+2), . . . , (vk,c(l,1)+j−1, vk,c(l,1)+j), independent514

of the behavior of Alg, where again vk,j denotes the vertex at which the request satisfied in515

phase Pk starts. If in any phase none of its requests are satisfied, the adversary omits all516

subsequent phases and stops completely immediately after the current phase.517

Let us now analyze the best competitive ratio Alg can achieve. We observe that in each518

of the first k phases Alg can grant at most one request. Hence, in case that Alg does not519

grant any request in some phase Pi, 1 ≤ i ≤ k, then gain(Alg(I)) ≤ i− 1 whilst Opt can520
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Figure 8 Schematic illustration on a general grid, where in each row of the grid a request has
been satisfied. In every row there are up to c(l, 1) many requests from the first k phases. Then, in
row k there are c(l, 1) many additional requests which cannot be accepted anymore.

satisfy (at least3) all requests that Alg has granted and additionally all requests of phase521

Pi, since none of them are mutually exclusive, so gain(Opt(I)) ≥ i− 1 + c(l, 1). If this is not522

the case, we may assume that Alg satisfies exactly one request in any of the first k phases.523

However, assume without loss of generality that Alg has satisfied the request (vk,j , vk,j+c(l,1))524

in phase Pk. Then, in every row all horizontal edges between column j and j + c(l, 1) are525

already taken, since there are k rows and Alg has granted exactly k requests so far, all of526

which start at the left side of j, i.e., in a column indexed by some a ≤ j, and end on the527

right side of j + c(l, 1), i.e., in a column indexed by some b ≥ j + c(l, 1). By the pigeonhole528

principle, we conclude that none of the c(l, 1) requests of phase Pk+1 can be satisfied, so529

gain(Alg(I)) = k(l), but Opt could have satisfied all requests of phase Pk+1 instead of530

granting a request from Pk, and thus gain(Opt(I)) ≥ k(l) + c(l, 1). Hence, the competitive531

ratio is at least c ≥ 1 + (c(l, 1) − α) · k(l)−1, for some constant α ≥ 0 in compliance with532

Theorem 11. Since f(l) is an increasing function, so is exp(f(l)) = c(l, 1) = l
1

k(l)+1 , which533

concludes c ∈ Ω(l
1

k(l)+1 · k(l)−1). J534

Note that by the considerations stated priorly, that in every row the number of requests has535

to be increasing in l, we observe that as a result the partitioning of l into the product of k+ 1536

increasing functions is actually needed and the bound on the competitive ratio is maximized537

when these functions are about the same, i.e., l = c(l, 1)k+1 and thus c(l, 1) = l
1

k(l)+1 .538

Also, let us remark that this proof generalizes the case of DPA very smoothly, in the539

sense that for k = 1 it actually boils down to c(l, 1) = l
1

k+1 =
√
l, which is precisely what has540

been used by Komm [10].541

I Corollary 13. For a constant k ∈ N, there is no online algorithm without advice for CAPG542

which achieves a constant competitive ratio on a (k × (l + 1))-grid.543

Proof. According to Theorem 12, the bound on the competitive ratio satisfies c ∈ Ω(l
1

k+1 ),544

because k is a constant. But clearly, for any constant k ∈ N, we have l
1

k+1
l→∞−−−→ ∞, and545

thus c cannot be bounded by a constant, so the statement follows directly. J546

Returning to the DPA problem, as already mentioned, the partitioning of some former547

request r into two requests yields requests r′1, r′2, which are mutually exclusive to r. Since,548

3 Alg might not have satisfied the first, but the jth request in some phase, so Opt could satisfy all of the
first j requests of that phase.
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Figure 9 Grid with odd m and n, which is completely covered by requests of length 2.

given an instance containig such requests, every algorithm then needs to decide whether to549

grant r or any requests from {r′1, r′2} instead, some advice should be necessary. This basic550

concept can be successively deployed in order to obtain further bounds: First, most obviously551

one can attempt to make statements about the necessary amount of advice to acquire an552

optimal solution, which in case of the DPA problem is proved to be at least half the length of553

the path [3]. Secondly, by reducing a well known and thoroughly studied problem, referred to554

as bit guessing, to DPA, statements about the amount of advice which is needed to achieve555

some competitive ratio can be established [14].556

These proofs extend to grids nicely. Even so, there is one obstacle in the not naturally557

given mutual exclusivity of these kinds of requests on grids. Since in this case there are558

plenty of possibilities to satisfy a given request, we will pack the requests very densely to559

cover the grid and provide some reasoning why then any detours would contradict other560

requests.561

I Lemma 14. Every (m × n)-grid G, with m and n odd, can be completely covered with562

requests of length 2, i.e., |E(G)|
2 = mn− m+n

2 requests of length 2 can be satisfied.563

Proof. The arrangement of the requests is shown in Figure 9. We define all requests to564

be horizontally and vertically aligned, since in that case the shortest paths between their565

endpoints are unique, which we will use in subsequent proofs. Note that if m and n are566

odd, then the length and height (in terms of the number of edges) are even. Since every567

request has length 2, there are m rows with n−1
2 horizontal requests and n columns with568

m−1
2 vertical requests. This yields mn−1

2 + nm−1
2 = mn− m+n

2 requests. J569

I Theorem 15. Every optimal online algorithm with advice for CAPG on a grid G uses at570

least |E(G)|
2 advice bits.571

Proof. By Subsection 2.4 it suffices to only consider (m × n)-grids G with m and n odd.572

We construct a set I of instances such that every instance I ∈ I consists of two phases573

P1 and P2: First in P1, |E(G)|
2 requests of length 2 are demanded, which is possible due to574

Theorem 14. Then, in phase P2 the adversary partitions some of the previous requests into575

two requests each of length 1. For instance, some request (u,w) ∈ P1 with shortest path576
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Figure 10 Some instance with ten requests in phase P2 (depicted in gray).

u, v, w is split up into two requests (u, v), (v, w) ∈ P2. Since P1 is immutable for all instances577

and any request of P1 can be chosen to be partitioned in P2, there are 2|E(G)|/2 instances.578

Let Alg be some optimal online algorithm with advice for CAPG. For the sake of579

contradiction, suppose that Alg uses b < |E(G)|
2 advice bits. Then, the set of possible advice580

strings has cardinality 2b < 2|E(G)|/2, so there are strictly less different advice strings than581

instances in I. Hence, by the pigeonhole principle, there have to exist two instances I1, I2582

for which Alg receives the same advice, which in particular implies that Alg also admits583

the same requests in phase P1 of both instances.584

Now, let us determine what these optimal solutions look like. First, note that requests585

from P2 have a shorter length than those from P1. Hence, in case that some algorithm586

always uses shortest paths to satisfy requests and prefers requests from P2 over those from587

P1 (whenever contradicting), it uses a minimal number of edges of G. Therefore, if then all588

edges of the grid are used, the number of granted requests is maximal, i.e., the algorithm is589

optimal. Note that this indeed can be attained, since according to Theorem 14 the requests590

of P1 (meaning the shortest paths to satisfy them) already cover G entirely and for every591

request-pair of P2, which partitions a previous request r, we can satisfy these two instead of592

r, by only using the same edges as r did (again with shortest paths).593

Note that using detours never makes sense, since any detour would use more edges, i.e.,594

less requests could be accepted. Hence, all optimal solutions use solely shortest paths to595

satisfy requests. Moreover, although not true in general, still in this setting the shortest596

paths to satisfy these requests are unique. In conclusion, then, there is only one unique597

optimal solution for every instance.598

Furthermore, observe that the optimal algorithm satisfies exactly |P1| + |P2|
2 requests,599

since it just permits as many requests from P1 as possible under the constraint that it can600

satisfy all further upcoming requests from P2, i.e., whenever it does not satisfy a request601

from P1 then it satisfies two requests from P2 instead, and all requests from P2 are satisfied.602

However, I1 and I2 differ in at least one request, which has to be from P2. In addition,603

in phase P1 Alg permits the same requests for both instances, because the same advice is604

given, so for the common prefixes of the instances Alg takes the exact same decisions. Thus,605

for one instance, a request from P2 contradicts and cannot be satisfied, although the optimal606

solution would admit all requests from P2, so we arrive at a contradiction and Alg cannot607

be optimal. This concludes the statement. J608

As mentioned beforehand, this construction can be employed to prove lower bounds609

beyond strict optimality, i.e., to make statements about the number of advice bits that are610

needed in order to obtain some competitive ratio (larger than 1). For this, we introduce611
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the problem of string guessing and a lower bound for it. Then, if we are able to reduce this612

problem to CAPG, we can transform the lower bound to one that is valid for CAPG. In613

other words, we have to show that, if we can solve CAPG with some competitive ratio and614

a certain amount of advice, then we could use this solution to achieve some performance615

for string guessing, contradicting the lower bound on string guessing, so such a solution for616

CAPG cannot exist. Therefore, we continue by defining the auxiliary problem.617

I Definition 16 (String Guessing with Unknown History [2]). The problem of string guessing618

with unknown history over an alphabet Σ, |Σ| ≥ 2, is a minimization problem ΠSGU. Every619

instance I ∈ I(ΠSGU) consists of some n ∈ N, followed by n− 1 requests “?” containing no620

additional information, and a string s = s1s2 . . . sn ∈ Σn of length n, i.e., I = (n, ?, ?, . . . , ?, s).621

A corresponding solution S ∈ S(I) is of the form S = (a1, a2, . . . , an), where ai ∈ Σ, and622

the last request remains unanswered. The measurement function is the Hamming distance4623

between s1s2 . . . sn and a1a2 . . . an.624

So in principle, a corresponding algorithm obtains the length of some yet unknown string625

s, and has to guess every character of s, without being aware of whether past guesses have626

been accurate. After all characters have been guessed, s is revealed to the algorithm. In the627

case that is of primary importance for us, namely |Σ| = 2, we call this problem bit guessing,628

since every response of a solution is a guess between two values, i.e., we try to find the right629

string of bits.630

The next theorem states the lower bound for bit guessing we will use in our reduction.631

I Theorem 17 (Böckenhauer et al. [2]). If 1
2 ≤ γ ≤ 1 and an online algorithm with advice632

guesses at least γn bits correctly of every instance of bit guessing with unknown history, then633

it uses at least (1 + (1− γ) log2 (1− γ) + γ log2 γ)n bits of advice. �634

Before we continue, let us elaborate a little on reduction proofs in the context of online635

algorithms with advice. Suppose we want to reduce an online problem ΠA to an online636

problem ΠB. Let therefore AlgA denote an online algorithm with advice for problem ΠA637

and likewise AlgB denote some online algorithm with advice for problem ΠB. Then, first638

the adversary constructs a fixed instance for ΠA and the oracle writes the most helpful639

advice string for this instance and this algorithm AlgA to the dedicated tape. Afterwards,640

AlgA gets its input in an online manner and has access to the advice tape. Possibly using641

this, AlgA now impersonates the role of the adversary for AlgB. Hence, AlgA is free to642

construct any suitable input for AlgB, but it also has to provide advice bits if demanded,643

by forwarding its own advice to AlgB on demand. Therefore, in case AlgA does not read644

additional advice bits, both algorithms use the same amount of advice. This is how advice is645

handled in the following proof. AlgA may determine its own output according to AlgB’s646

output. However, there is a subtle detail: AlgA is not allowed to construct the input for647

AlgB depending on the output of AlgB , since in the advice model the instance has to be648

fixed in advance, so that the advice can be based on it. Nonetheless, AlgA only needs to fix649

the asked requests one by one, possibly receiving new requests itself from the adversary in650

between. Then, since the oracle knows the instance for AlgA and the deterministic algorithm651

AlgA, it can specify the advice beforehand.652

4 The Hamming distance of two strings of the same length is the number of positions at which their
characters differ.
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I Theorem 18. Every online algorithm with advice for CAPG which achieves a competitive653

ratio of c ≤ 12
11 on a grid G has to read at least654 (

1 +
(

6− 6
c

)
log2

(
6− 6

c

)
+
(

6
c
− 5
)

log2

(
6
c
− 5
))
|E(G)|

2655

656

bits of advice.657

Proof. Let Capg be some online algorithm with advice for CAPG. Then, we can devise658

another algorithm BGuess for bit guessing with unknown history, which uses Capg and659

forwards the advice bits on demand, i.e., we reduce the bit guessing problem to the Call660

Admission Problem on Grids. In conclusion, Theorem 17 then yields a lower bound on the661

amount of advice which Capg has to use.662

Initially, on an instance I ′ ∈ I ′ for bit guessing, BGuess obtains the number n′ of bits it663

has to guess. As Subsection 2.4 explains, it suffices to consider instances that are defined on664

an (m× n)-grid G with m and n odd, such that |E(G)|
2 = n′. Note that any (m× n)-grid has665

m · (n − 1) + n · (m − 1) edges, so this is possible. Hence, we can use the same instances666

I ∈ I for CAPG as in Theorem 15, consisting of phases P1 and P2.667

BGuess also operates in two phases: First, for every “?” received, it demands one of the668

requests from P1 and guesses 1 for every request that Capg satisfies, and 0 otherwise, so the669

ith answer of Capg specifies the ith guess of BGuess. Since hereafter BGuess has guessed670

all bits, the correct bit string s is revealed to BGuess, and BGuess now knows which of671

its guesses have been accurate. As discussed before, BGuess is only allowed to exploit the672

knowledge of s, but not what Capg answered in order to ask further requests. However,673

note that so far P2 has not been constructed, so in particular whether the decisions of Capg674

have been right or wrong is still not revealed and thereby, though BGuess has completed675

its output, wrong decisions of Capg of the past might be punished by following requests.676

Since the oracle is conscious of all these decisions, and the advice is only used by Capg, the677

advice bits then are actually chosen with regard to the final instance for Capg.678

Therefore, in P2, BGuess partitions every request of P1 which corresponds to a 0 in s679

into two requests, includes them into P2 and demands them from Capg. Then, the optimal680

answer for Capg would have been to grant exactly the requests for which s contains a 1.681

Note that this construction does not depend on the answers of Capg or BGuess, but only682

on the last request s for BGuess, which is transformed into possibly multiple requests for683

Capg. So, this way BGuess penalizes Capg for every guessed bit that deviates from the684

corresponding bit of s, because then, for every such bit, Capg’s solution differs from the685

optimal solution Opt(I). However, since for multiple erroneously unsatisfied requests of686

P1, Capg might be able to grant requests from P2 which are not contained in the optimal687

solution, the cost of Capg is not obvious. Therefore, we analyze the consequences in more688

detail.689

Case 1: Suppose Capg has mistakenly not granted k1 many requests from P1. Then, this690

decreases gain(Capg(I)) by k1 compared to gain(Opt(I)) (with respect to P1 only,691

of course, since the unused edges might be used elsewhere).692

Case 2: If Capg has satisfied a request r ∈ P1 that is not satisfied by Opt(I), then there693

are two possibilities to consider:694

Case 2.1: First, Capg might not be able to accept any of the requests r1, r2 ∈ P2 which695

partition r, so mutual exclusivity actually holds.5 Consequently, for k21 incidents696

5 At least in some sense, since r1 and r2 do not necessarily contradict with r itself. In particular, it is
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. . .

. . .
≥ 1

≥ lr

≥ 1

r

Figure 11 Every detour (black) has to go at least one edge up, at least the length lr of the
request r (gray) to the right and again all the way down, since the requests are horizontally or
vertically aligned in this setting. The same holds for the rotated settings.

of such an r, Capg loses k21 of the potential gain, since it only satisfies r instead of697

both r1 and r2. Observe that these kinds of mistakes do not leave free additional698

edges compared to the optimal solution, because the only reason why r1 and r2699

cannot be satisfied is that the edges are already occupied by some other request,700

so there is no “advantage” one could make use of when satisfying other requests.701

Case 2.2: Eventually, the case remains in which Capg can satisfy at least one of r1 and r2702

nonetheless and thereby, if both are accepted, is able to compensate for former703

mistakes. Let there be k22 such incidents. Then, either r has been granted using704

a detour, thus r1 and r2 can be satisfied directly, but the detour concerning r has705

length at least 4 (see Figure 11). Otherwise, r1 and r2 need to use detours, each706

of length at least 3 (again see Figure 11). However, in either scenario it conflicts707

with more requests than in the optimal solution, which is what we will exploit:708

Since every conflicting request has length at most 2 and the optimal solution709

completely covers the grid with requests, the mistakes of case 1 can only leave710

two edges per request unused in comparison to the optimal solution. In order to711

compensate a former mistake, both r1 and r2 need to be granted. Therefore, by712

counting the needed amount of edges to satisfy two extra requests of case 2.2 and713

the number of edges which are unoccupied due to mistakes of case 1, we obtain714

min{4, 2 · 3} · k22 ≤ 2k1, so no more than 1
2k1 requests can be rectified.715

Thus, altogether, if BGuess guesses a fraction of γ bits correctly, the (1 − γ)n′ =716

k1 + k21 + k22 mistakes of BGuess result in a decline of at least k1 + k21 − k22 for the gain717

of Capg in contrast to the optimal gain, i.e.,718

gain (Capg(I)) ≤ gain (Opt(I))− (k1 + k21 − k22)719

= gain (Opt(I))− k1 + k21 − k22

(1− γ)n′ (1− γ)n′720

= gain (Opt(I))− k1 + k21 − k22

k1 + k21 + k22
(1− γ)n′.721

722

Note that mistakes as in case 2.1 cannot be corrected and decrease the gain of Capg only,723

therefore without loss of generality we assume k21 = 0, so (1− γ)n′ = k1 + k22. Together724

possible that even without permitting r both r1 and r2 could not be granted.
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with k22 ≤ 1
2k1 we derive725

gain (Capg(I)) ≤ gain (Opt(I))− k1 + k21 − k22

k1 + k21 + k22
(1− γ)n′726

≤ gain (Opt(I))− k1 − k22

k1 + k22
(1− γ)n′727

≤ gain (Opt(I))−
1
2k1
3
2k1

(1− γ)n′728

= gain (Opt(I))− 1
3(1− γ)n′.729

730

Then, for the competitive ratio c of Capg, clearly731

c ≥ gain(Opt(I))
gain(Capg(I))732

≥ gain(Opt(I))
gain(Opt(I))− 1

3 (1− γ)n′
733

≥ 1 +
1
3 (1− γ)n′

gain(Opt(I))− 1
3 (1− γ)n′

.734

735

Now, gain(Opt(I)) ≤ 2n′, because there are exactly that many edges in G. Hence,736

c ≥ 1 +
1
3 (1− γ)n′

2n′ − 1
3 (1− γ)n′

737

= 1 +
1
3 (1− γ)

2− 1
3 (1− γ)

738

= 1 + 1− γ
5 + γ

739

= 6
5 + γ

.740

741

Solving for γ results in742

γ ≥ 6
c
− 5.743

744

Hence, the condition γ ≥ 1
2 yields c ≤ 12

11 and thus, by Theorem 17 we obtain that at least745 (
1 +

(
6− 6

c

)
log2

(
6− 6

c

)
+
(

6
c
− 5
)

log2

(
6
c
− 5
))

n′746

=
(

1 +
(

6− 6
c

)
log2

(
6− 6

c

)
+
(

6
c
− 5
)

log2

(
6
c
− 5
))
|E(G)|

2747

748

bits of advice have to be used by Capg in order to be c-competitive. J749

Actually, Barhum et al. [1] showed that, on a path G, the just exploited bound of750

Theorem 15 can be enhanced by a factor of almost 2 to |E(G)| − 1 advice bits, which751

they also proved to be sufficient. Intuitively, in order to achieve this, we have to force any752

algorithm to take more decisions concerning whether to take a request or not, so that it753

has to use some advice for every such decision. Therefore, we need to construct a set of754

instances I where the requests are possibly densely packed and the satisfaction of a request755

r ought to be contradicting with many other requests possibly present in the instance, i.e.,756
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granting r should exclude the admission of a lot of other requests which may be asked in the757

future. Since mutually exclusiveness is obtained quite easily on paths, but is rather involved758

for proper grids, following the employment of this idea for CAPG instead of DPA needs759

some extra workarounds. However, for either problem a valid construction of such instances760

requires caution.761

To this end, we will introduce some additional findings, which are very helpful for proving762

lower bounds. In principle, they just formalize the intuitive understanding that, if an online763

algorithm has to take different decisions for some instances, before it is observable for the764

algorithm that the instances themselves are mutually distinct, then the algorithm needs765

advice to distinguish them. Hence, if there are d such instances, then log2(d) advice bits766

are needed. For a more thorough discussion on partition trees, and detailed proofs of the767

following lemma and theorem, we recommend [15].768

I Definition 19 (Partition Tree [1]). Let I be some set of instances for an online problem Π.769

Then, a partition tree T (I) is a graph which is defined as follows:770

1. Each vertex v of T (I) is associated with a set of instances Iv ⊆ I and the length kv of a771

prefix which all I ⊆ Iv have in common.772

2. The sets of the children of an inner vertex v of T (I) constitute a partition of Iv.773

3. The root is associated with the set of all considered instances I.774

Slightly abusing notation, we define the prefix of length k of an instance, a solution or a775

string to be [·]k. Then, [I]k, for an instance I, refers to the first k requests, for a solution S,776

[S]k denotes the first k replies, and for a string s we define [s]k to be the first k characters of777

s.778

As mentioned before, the next lemma will state that, for distinct instances which are779

indistinguishable for the algorithm at the time it has to take different decisions for achieving780

an optimal solution, distinct advice strings are necessary. The theorem after that completes781

our needed prerequisites by concluding how much advice then has to be read.782

I Lemma 20 (Barhum et al. [1]). Let I be some set of instances for an online problem Π783

and let T (I) be some corresponding partition tree. Further, consider a vertex v of T (I) and784

two vertices v1 and v2 in disjoint subtrees rooted at children of v. Let I1 ∈ Iv1 and I2 ∈ Iv2785

be any instances with a common prefix of length kv. If for all optimal solutions S1, S2 for I1786

and I2, respectively, [S1]kv
6= [S2]kv

, then different advice strings have to be used for I1 and787

I2 by every optimal online algorithm with advice. �788

I Theorem 21 (Barhum et al. [1]). Let I be some set of instances for an online problem Π789

and let T (I) be some corresponding partition tree such that the conditions of Theorem 20790

are satisfied and suppose that T (I) has d leaves. Then, every optimal online algorithm with791

advice has to use at least log2(d) advice bits. �792

Let us now explain the idea of the proof by Barhum et al. [1] for the disjoint path793

allocation problem on a path of length l, i.e., a (1 × (l + 1))-grid. We consider a set of794

instances I for which the optimal solutions consist of requests that partition the whole path,795

in particular there is no edge that is not used, i.e., at every vertex at which some request796

ends, another request starts (except for the end vertices of course). Thus, each inner vertex797

vi, 2 ≤ i ≤ l, can be associated with a bit si−1, which is 1 if in the provably unique optimal798

solution one request ends and another one starts at vi, and 0 otherwise. So an instance I ∈ I799

is constructed by taking any bit string s of length l − 1 and splitting I into l phases in the800

following manner: Phase Pi contains all i possible requests of length l + 1− i on the path,801
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0 0 1 1 0 1

P1

P2

P3

P4

P5

P6

P7

Figure 12 An example instance as used by Barhum et al. [1] on a path of length 7 which depicts
the phases and how the path is partitioned by the optimal solution that is indicated by the above
bit string.

except those which overlap a request from an earlier phase which has been granted by the802

(unique) optimal solution, which in turn is indicated by s as described earlier. Within a803

phase, the requests are given from left to right (see Figure 12).804

It can be shown that the optimal solutions for different instances already have to differ805

before the instances are distinct on their prefixes of requests. Thus, Theorem 20 and806

Theorem 21 are satisfied. Also, we can describe the optimal solutions by the bit string807

s1s2 . . . sl−1, so in conclusion, there is a partition tree T (I) which has 2l−1 leaves, so at least808

log2(2l−1) = l − 1 advice bits are required.809

Unfortunately, returning to the case of a general grid, playing this game on every row and810

column separately does not immediately yield a similar result. This is because, e.g., in case811

that for some instance I ∈ I, the solution S(I) intended by the bit strings s1, s2, . . . , sm+n812

(one for each row and each column) grants quite long requests on every second row (or813

column), some other solution S′(I) could reject the long requests with a cost of only 1 per814

request and rather use their many edges for detours which satisfy relatively short requests,815

resulting in an increased overall gain. Figure 13 shows a concrete counterexample to this816

strategy on a (7× 7)-grid (depicting only the requests of interest due to reasons of space and817

clarity).818

Hence, the size of the requests has to be restricted what can be achieved by starting only819

at phase Pl−3 on each row (with respect to the above enumeration of phases), or respectively820

each column, so every request has length at most 4, i.e., the associated bit strings contain at821
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1 3 5 7
1

3

5

7

Figure 13 In this figure only the contradicting requests are shown. Those of length 6 drawn in
gray are not satisfied, but instead the requests of length 2 in blue on every even row are granted
using detours. If all non-contradicting requests are granted or dismissed according to the bit strings
s1, s2, . . . , sm+n, then this solution grants 9 − 8 = 1 request more than S(I).

most three consecutive 0s. For these strings, we will prove the following lemma and using822

this, eventually generalize the proof to the case of grids.823

I Lemma 22. There are tn+2 bit strings of length n ∈ N which contain at most three824

consecutive 0s, where tn denotes the nth tetranacci number.6825

Proof. We count the number of such bit strings recursively. Note that in case we append a826

0 to a given bit string which satisfies the property, we cannot conclude whether the property827

is violated or not without additional information. Hence, let us count slightly different bit828

strings.829

Let tk denote the number of bit strings of length k ≥ 1 which satisfy the property, and830

both start and end with a 1. Then, t1 = 1, t2 = 1, t3 = 2, t4 = 4. Moreover, observe that831

a bit string b of length k ≥ 5 has to end with one of the suffixes 1 1, 1 01, 1 001 or 1 0001832

in order to comply with the property. Hence, by considering in each case the first 1 of the833

suffixes to be the last one of a shorter bit string b′ which satisfies the property, we count834

tk = tk−1 + tk−2 + tk−3 + tk−4. But this is just the definition of the tetranacci numbers for835

k ≥ 1.836

Finally, by removing the first and last 1 of each such string, we retrieve all bit strings837

which satisfy the originally imposed condition. Thus, the number of bit strings of length n838

with at most three consecutive 0s is tn+2. J839

I Theorem 23. Every optimal online algorithm with advice for CAPG on an (m× n)-grid840

G has to read at least m · log2(tn) + n · log2(tm) advice bits.841

Proof. Basically, we want to ask the last phases of the same instances as in the original proof842

by Barhum et al. [1] separately on each row and each column. Hence, let I be the set of843

instances we use in this proof. Then, for the construction of an instance I ∈ I, consider the844

6 A000078 in Sloan’s “The On-Line Encyclopedia of Integer Sequences.” [13]

http://oeis.org/A000078
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ordering Q of the rows and columns in which they are sorted from left to right, respectively845

from top to bottom. Then, successively for each row (column), qi ∈ Q, we take some bit846

string si of length n− 2 (or m− 2, respectively) with at most three consecutive 0s and create847

phases just as before according to si but this time only those containing requests of length at848

most 4, i.e., phases Pn−4, Pn−3, Pn−2, Pn−1 (Pm−4, Pm−3, Pm−2, Pm−1, respectively), where849

each row (column) is considered as an isolated path. Recall that bit strings with at most850

three consecutive 0s, like si, correspond to a partition of a row (column) with requests of851

length at most 4, so the bit strings and the phases are consistent.852

Eventually, we want to satisfy the conditions of Theorem 20 in order to be able to apply853

Theorem 21. Therefore, we first want to establish that there are only a few optimal solutions854

for every instance I ∈ I, so then, when arguing about all optimal solutions for I, actually855

only these have to be considered.856

Let S(I) be a solution that satisfies requests on every row (column) qi according to the857

dedicated bit string si, videlicet, partitions qi such that exactly the edges from qi are used,858

and at any inner vertex of qi one request ends and another one starts if and only if the859

corresponding bit in si is 1. Obviously, there exists such a solution. Observe that S(I) uses860

all edges and that all requests are satisfied using a shortest path, so there is no possibility861

to get by with fewer edges or granting additional requests. Furthermore, all these shortest862

paths are unique, since the requests are horizontally or vertically aligned respectively. Thus,863

there is only one unique solution S(I) which satisfies exactly the requests suggested by864

s1, s2, . . . , sm+n. We intend to prove that S(I) is one of the optimal solutions. For this865

purpose, we first conclude that, for all optimal solutions, any kind of deviating from S(I)866

would provoke a detour and later that these detours can only be of certain forms, such that867

every of these solutions can reach at most the gain of S(I).868

To this end, consider a solution S′(I) that accepts different requests. If a request r1,869

which has been granted by S(I), is not permitted in S′(I), then, by construction of I, there870

are no further requests on these edges. Thus, every solution that does not use these edges is871

inferior to any optimal solution, since it could have additionally admitted r1. Every solution872

that still uses these edges has to use a detour on these edges such that it contradicts r1.873

In case there is a request r2 which has not been satisfied by S(I), but is accepted by874

S′(I), I by definition contains shorter requests that partition r2. Thus, either S′(I) admits875

r2 horizontally or vertically aligned, but clearly this would be suboptimal, because then more876

shorter requests could be satisfied instead using the same edges, or S′(I) uses a detour for r2877

(or the contradicting shorter requests) as well.878

Therefore, every optimal solution deviating from S(I) involves detours. Remember that879

despite being referred to as “detour”, in a more general setting, this does not necessarily880

diminish the gain of the solution as Figure 13 illustrates. However, with these restricted881

phases, such a solution cannot be superior, as we will see by examining the possible lengths882

of detours.883

First, observe that for these instances every detour has length at least 3 (see Figure 11),884

because all requests are horizontally or vertically aligned. However, since there are no885

overlapping (meaning identical) requests of length 1, either such a request r3 could have886

been satisfied directly needing less edges (if the edge would remain free otherwise), or the887

respective edge is occupied by another request r4 of length at least 2. But then, r3 can be888

satisfied directly using only one edge, while the other one uses the former detour of r3, which889

would result in an (in some sense) equivalent solution S′′(I) that satisfies the same requests,890

but uses a detour of length at least 4 (see Figure 14). So if there is an optimal solution with891

a detour of length 3, then there is one satisfying the same requests and using the exact same892
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r3

r4

r3

r4

r3

r4

r3

r4

Figure 14 Two examples of a request r3 and a request r4, s.t. in each example they are satisfied
in two different ways, but both times using the same edges.

r7r5

r6

Figure 15 To the left, we see why a request of length 2 (gray) cannot be overlapped by only one
request of length 1. On the right side, the unique form of a detour (up to symmetry) used by an
optimal solution is depicted.

edges where all detours have length at least 4.893

Next, consider the case that all detours in S′(I) have length at least 4 and there exists a894

detour of length at least 5. Such a this solution cannot be optimal, since every detour is at895

least as long as the longest request and one is even longer, i.e., deleting the detours would896

yield some free edges, all of which are covered by S(I) with requests that are satisfied with897

paths of length at most 4.898

Thus, the case of detours of length exactly 4, which replace requests of length 4, remains.899

Note that such a solution can be at most as good as S(I), since we trade detours of length 4900

against requests of length at most 4, and additionally all detours of length 4 satisfy requests901

of length 2. In conclusion, then, S(I) is optimal, and it remains to prove that optimal902

solutions of different instances have to be distinct already before their instances differ.903

To this end, we need to know the shape of the detours in even greater detail, because904

we aim at showing that optimal solutions for distinct instances differ at the latest in a905

detour they actually grant. Therefore, we will disclose that all detours are actually shaped906

as Figure 15 depicts.907

Since we can alter all detours to have length 4 and detours of length 4 satisfy requests908

of length 2, there has to be a request of length 2 involved in every detour (either as detour909

itself or as contradicting request). Knowing all this about detours, consider a request r5 of910

length 2, which is not contradicted by two, but only by one request r6 of length 1. Then, by911

construction, there has to be another request r7 before r5, which overlaps it and is intended912

by the bit string to be granted together with r6. But then, again by the definition of the913

phases, r5 cannot be part of this instance (see Figure 15). Hence, actually all detours are914

contradictions between one request of length 2 and two requests of length 1, and given a915

length of 4, there is actually only one possible kind of detour left that can be used by an916

optimal solution (up to symmetry, see Figure 15).917

We proceed by proving that every optimal solution has to grant a detour before it is918

able to reject a request which is intended to be satisfied by the corresponding bit string. To919

comprehend why we do so, think of a solution that first omits a request that is intended by920

the dedicated bit string, and afterwards permits a detour instead. Then, at the time the921
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e

d

qj

No detours here

Figure 16 There is no way to get to and back from the single edge e, so it cannot be used to
satisfy any request.

request in question has been left unsatisfied, it is still undetermined whether there will be922

further smaller requests on this part of the grid in the future or not, i.e., whether an optimal923

solution would need to take a detour later on or not. Yet, already the following request (or924

rather the existence of a subsequent phase on these edges) might depend on this. Hence,925

there could be two distinct instances, for which some optimal solutions do not differ earlier926

in time, as imposed by Theorem 20. However, given detours of a form as in Figure 15, it927

can be proven that any optimal solution has to satisfy a detour before a request which is928

suggested by the bit string has not been granted.929

For the sake of contradiction, suppose this is not the case. Then, let qj be the first row930

(column) where an intended request has not been granted. By the previous reasoning, this931

request has length 4. Let d be a detour that uses 2 of these free edges. Then, there is some932

free edge e which is adjacent to two edges of d. Since by assumption there has not been a933

detour before, there is no detour above (left) of qj . But then, since by construction there are934

no shorter requests partitioning the intended request on this part of qj , there is no possibility935

to satisfy a request passing through e, and hence the solution is not optimal (see Figure 16).936

Therefore, some detour has to be accepted first.937

Let I(1), I(2) ∈ I be two distinct instances, and S(I(1)) and S(I(2)) be the optimal solutions938

suggested by the respective bit strings s(1) = s
(1)
1 s

(1)
2 . . . s

(1)
m+n and s(2) = s

(2)
1 s

(2)
2 . . . s

(2)
m+n.939

Further, S′(I(1)) and S′(I(2)) denote some optimal solutions for I(1) and I(2) which take940

detours. Then for Pk being the first phase in which I(1) and I(2) differ, by construction, there941

has to be a request in the preceding phase that has been suggested by s(1), but not by s(2),942

or the other way around. Since by assumption S(I(1)) and S(I(2)) act according to these943

bit strings, they differ even before their instances differ. Also, either [S′(I(2))]j = [S(I(2))]j944

for j being the number of requests asked so far, or S′(I(2)) has used a detour already.945

Anyway, S′(I(2)) and S(I(1)) have to be distinct before their instances as well, and so946

do S′(I(1)) and S(I(2)). Now, assume that [S′(I(1))]j and [S′(I(2))]j are identical. Since947

[S(I(1))]j 6= [S(I(2))]j , they have to take a detour. But since there is only one kind of detour948

it is easy to see that using the same detours would imply that [s(1)]j = [s(2)]j , and thus, also949

S′(I(1)) and S′(I(2)) have to differ earlier than their instances.950

Finally, we conclude that there is a partition tree T (I) which satisfies the prerequisite of951

Theorem 20 with as many leaves as there are different instances in I, which themselves can952

be counted by the corresponding bit strings for each row and each column. Hence, there953

are tmn · tnm instances and by Theorem 21 there are log2(tmn · tnm) = m · log2(tn) + n · log2(tm)954

advice bits necessary for every optimal online algorithm with advice. J955

I Corollary 24. Every optimal online algorithm with advice for CAPG on an (m× n)-grid956

G has to read at least 0.94677 · |E(G)| −m− n advice bits.957

Proof. It has been proven that the ratio ti
ti−1

of consecutive tetranacci numbers converges to958
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the so-called tetranacci constant which is given by the unique real root greater than 1 of the959

characteristic polynomial of the recurrence, i.e., λ > 1 such that χ(λ) = λ4−λ3−λ2−λ−1 = 0,960

so limi→∞
ti
ti−1

= λ ≥ 1.92756 [11, 7]. According to [7], we thus have961

tk ≥
λ− 1

2 + 5(λ− 2)λ
k−1 − 0.5962

≥ 0.29381 · 1.92756k − 0.5.963
964

Since the logarithm is a strictly increasing function, we conclude965

log2(tk) ≥ log2(0.29381 · 1.92756k − 0.5)966

= log2

(
0.29381 · 1.92756k

(
1− 0.5

0.29381 · 1.92756k

))
967

= log2(0.29381 · 1.92756k) + log2

(
1− 0.5

0.29381 · 1.92756k

)
.968

969

Then, for sufficiently large k and small enough ε ∈ R, ε > 0,970

log2(tk) ≥ log2(0.29381 · 1.92756k)− ε971

= log2(0.29381) + k · log2(1.92756)− ε972

≥ 0.94677 · k − 1.76705.973
974

Using this, the bound from Theorem 23 simplifies to975

m · log2(tn) + n · log2(tm) ≥ m · (0.94677n− 1.76705) + n · (0.94677m− 1.76705)976

= 0.94677 · 2mn− 1.76705m− 1.76705n977

= 0.94677 · (2mn−m− n)− 0.82028m− 0.82028n978

= 0.94677 · |E(G)| − 0.82028m− 0.82028n979

> 0.94677 · |E(G)| −m− n,980
981

which concludes the statement. J982

Note that if we could implement all phases, i.e., use bit strings of length n − 2 or983

respectively m − 2 for every row or column just as on the path, then this would result in984

m · (n− 2) + n · (m− 2) = |E(G)| −m− n advice bits, so our result is indeed surprisingly985

close (see Figure 17).986
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Figure 17 Illustration of the number of advice bits needed on a path of length n in comparison
to the slightly worse lower bound which is obtained by using only requests of length 4 as in the
proof of Theorem 23.
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3.2 Upper Bounds987

For the results regarding upper bounds, recall the definitions of d(v) as the degree of a vertex988

v, ∆(G) as the maximum degree of a graph G, χ(G) as its chromatic number, and ω(G)989

denoting the maximum clique size.990

Note that, unlike for lower bounds, upper bounds for DPA do not inherently carry over991

to CAPG, videlicet, a method to solve DPA does not necessarily have to be applicable for992

CAPG as well. Hence, the proofs of these results will be far less guided by ideas of upper993

bounds for DPA. In fact, upper bounds are usually given by an explicit design of an algorithm994

that achieves a solution of some quality reading at most a certain amount of advice. Since995

this has to hold for all instances, general properties concerning the grid and the problem996

procedure are exploited instead of inspecting specific instances as typical for lower bounds.997

Let us start with the most obvious upper bound.998

I Theorem 25. There is an optimal online algorithm with advice for CAPG which reads999

at most 2|E| · dlog2(|V |)e ≤ 2|E| · log2(|E| + m + n) bits of advice for every (m × n)-grid1000

G = (V,E).1001

Proof. Recall that there are |V | = mn vertices and |E| = m(n−1)+n(m−1) = 2mn−m−n1002

edges in G, so |V | = |E|+m+n
2 . Hence, for an arbitrary, fixed optimal solution, the oracle can1003

encode the two endpoints of every satisfied request using 2 · dlog2(|V |)e ≤ 2 · log2(|E|+m+n)1004

bits per request. Since there are at most |E| requests contained in an optimal solution,1005

the oracle needs at most 2|E| · dlog2(|V |)e bits of advice to encode all granted requests1006

of the optimal solution (the rest of the 2|E| · dlog2(|V |)e bits can be filled with repeating1007

the first encoded vertex). Then, some online algorithm Alg with advice can read these1008

2|E| · dlog2(|V |)e bits at the very beginning and with this additional information it is able1009

to recompute a (possibly different) optimal solution in an offline manner. Alg then simply1010

admits or denies the demanded requests according to this solution. J1011

Actually, a further upper bound for a restricted set of instances is already established1012

by the idea of Theorem 23, since its proof is (nearly) constructive, just as for the inspiring1013

result regarding DPA [1].1014

I Theorem 26. For instances with either horizontally or vertically aligned requests of length1015

at most 4, there is an optimal online algorithm with advice for CAPG that uses at most1016

dm · log2(tn) + n · log2(tm)e advice bits for every (m× n)-grid G, where tk denotes the kth1017

tetranacci number.1018

Proof. Since in Theorem 23 it has been proven that the solution indicated by the bit string1019

s1s2 . . . sm+n is optimal, it is sufficient to transmit this information. Furthermore, according1020

to Theorem 20, there are exactly tmn · tnm such strings. Hence, given an ordering (e.g.,1021

lexicographical) of all possible such strings, the oracle can specify the bit string corresponding1022

to an optimal solution by writing the position of the bit string in the ordering on the advice1023

tape. For this, the oracle needs dlog2(tmn · tnm)e = dm · log2(tn) + n · log2(tm)e advice bits.1024

Then, there is some online algorithm Alg with advice that reads these bits, determines the1025

bit string s1s2 . . . sm+n by considering the same ordering and then decides in compliance1026

with it, i.e., Alg computes an optimal solution. J1027

Therefore, analogously to DPA, in this special case the bound is tight. Again, we can1028

numerically bound these parameters and obtain the following corollary.1029
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I Corollary 27. For instances with either horizontally or vertically aligned requests of length1030

at most 4, there is an optimal online algorithm with advice for CAPG that uses at most1031

|E(G)| − m+n
2 + 1 advice bits for every (m× n)-grid G.1032

Proof. Analogously to the proof of Theorem 24, by [11, 7] we can bound the tetranacci1033

constant λ from above by λ ≤ 1.92757, and thus, for the kth tetranacci number we conclude1034

from the bound given in [7] that1035

rCltk ≤
λ− 1

2 + 5(λ− 2)λ
k−1 + 0.51036

≤ 0.29381 · 1.92757k + 0.5.1037
1038

With the same reasoning as in the proof of Theorem 24, this results in1039

rCl log2(tk) ≤ 0.94679 · k − 1.76704.1040
1041

Therefore,1042

dm · log2(tn) + n · log2(tm)e ≤ 0.94679 · |E(G)| − 0.82025m− 0.82025n+ 11043

< |E(G)| − m+ n

2 + 1,1044
1045

which by Theorem 26 yields the desired proposition. J1046

As observed easily, knowing which edges of the grid are used to satisfy a request and which1047

remain unused for some optimal solution is not sufficient for an algorithm to reconstruct an1048

optimal solution. For example, consider the instances used in the proof of Theorem 15, in1049

which all edges are used by every optimal solution, and in which some of the requests of1050

length 2 are partitioned into two requests each of length 1 in a phase later in time. Then,1051

obviously, knowing that all edges are used is worthless, since the algorithm still cannot1052

conclude whether to grant a request of length 2 or rather to wait for a potential pair of1053

shorter requests. Therefore, we cannot bound the number of advice bits from above by1054

simply writing one bit per edge indicating whether it is utilized in some specific optimal1055

solution or not. This suggests it might be necessary to transmit the membership to a request1056

as well, in order to establish the contours of the requests somehow. Hence, the question of1057

how many bits per edge are necessary to reconstruct these memberships in an unambiguous1058

way arises. Considering that for this reason “neighboring” paths need to be distinguishable,1059

i.e., they ought to have different identifiers, one might already presume correctly that this1060

leads to the prominent issue of vertex coloring in some transformed auxiliary graph, which1061

will be defined next. Note that the unused edges need to be distinguishable from the used1062

ones, too. However, they do not necessarily form paths, but arbitrary connected components1063

and we are free to split them further up in any way, minimizing the number of needed colors,1064

as long as we can still discriminate them from the used ones.1065

I Definition 28. Given any optimal solution S for an instance of CAPG on a grid G, the1066

graph Ĝ(S) = (V̂ , Ê) is defined as follows. Every path p used by S to satisfy a request1067

corresponds to a vertex vp ∈ V̂ . Every connected component of unused edges in G according1068

to S is split up into connected components s.t. each component q corresponds to a vertex1069

vq ∈ V̂ and s.t. the chromatic number χ(Ĝ(S)) is minimized. There are no further vertices1070

in V̂ . The neighborhood of a vertex vg ∈ V̂ is defined as the vertices whose corresponding1071

connected components share a vertex with g, i.e., the set of edges Ê contains all {vg, vh}1072

such that vg, vh ∈ V̂ and g and h have some vertex in common.1073
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Figure 18 On the left, some optimal solution S(I) for an instance I on a grid G is depicted.
The granted requests are drawn as colored paths, whereas the unused edges are surrounded by
colored borders indicating how the connected component of unused edges is divided further in order
to minimize χ(Ĝ). To the right, Ĝ is shown, where the filled vertices correspond to the paths
colored in the same color which satisfy requests in G, and the unfilled vertices correspond to the
connected components of unused edges with the same color. Since Ĝ contains a 4-clique even without
considering the vertices corresponding to connected components of unused edges, and the depicted
coloring is a proper 4-coloring, this is indeed optimal. Moreover, note that the unused edges need to
be split up in order to achieve optimality.

For an example of the application of this definition, see Figure 18. For reasons of1074

readability, we will hide the dependency on S and simply write Ĝ instead of Ĝ(S) whenever1075

suitable. Furthermore, note that there might be multiple ways to split up a connected1076

component according to the definition s.t. χ(Ĝ(S)) is minimized, but for our purposes it1077

suffices to examine any of these possibilities, so we venture to retain this inaccuracy.1078

I Theorem 29. Let I denote all possible instances of CAPG on a grid G = (V,E), and1079

let Sopt(I) be the set of optimal solutions for an instance I ∈ I. Then, there is an optimal1080

online algorithm with advice for CAPG using at most1081

max
I∈I

min
S∈Sopt(I)

d|E| · log2(χ(Ĝ))e+ 2dlog2(χ(Ĝ(S)))e1082

1083

advice bits.1084

Proof. Given an instance I ∈ I on a grid G, the oracle knows Sopt(I) and can compute1085

χ(Ĝ(S)) for every S ∈ Sopt(I). Hence, the oracle selects S ∈ Sopt(I) such that it minimizes1086

d|E|·log2(χ(Ĝ))e+2dlog2(χ(Ĝ(S)))e for the given instance, colors the corresponding connected1087

components of G according to Ĝ, and indicates the colors of all edges by enumerating all1088

colorings of the edges (even non-proper colorings) from 0 to χ(Ĝ)|E| − 1. Then, the oracle1089

writes the appropriate number on the advice tape, where the edges of G are ordered in any1090

arbitrary, but fixed way. For this, d|E| · log2(χ(Ĝ))e bits are needed. Since |E| is given as1091

part of the instance, but an online algorithm cannot know χ(Ĝ(S)), this value needs to be1092

given in a self-delimiting encoding and prepended to the advice. This can be done using1093

2dlog2(χ(Ĝ(S)))e additional bits (see Subsection 2.4).71094

Obviously, there exists an online algorithm Alg with advice for CAPG that first reads1095

and decodes χ(Ĝ(S)), calculates d|E| · log2(χ(Ĝ))e as the length of the remaining advice,1096

and then reads exactly these numbers from the advice tape and recovers the coloring of the1097

connected components in G by using an identical ordering of the edges. Then, for every1098

incoming request, Alg determines whether it can be satisfied using exactly the edges of1099

one uniformly colored connected component. If this is the case, Alg satisfies the request,1100

7 Actually there are better encodings, but since this is only a small additive term, we favor readability.
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otherwise it gets rejected. Since, for any of the connected components that are used by the1101

optimal solution S, a suitable request gets asked, and since Alg does not satisfy any request1102

using edges from more than one of these connected components, Alg computes an optimal1103

solution as well (which might be distinct since Alg could possibly interchange a connected1104

component that is not used in S with one that is used in S in order to satisfy a request).1105

Hence, Alg has to read at most (|E| + 2) · dlog2(χ(Ĝ))e advice bits for the worst case of1106

some I ∈ I. J1107

I Corollary 30. If maxI∈I minS∈Sopt(I) χ(Ĝ(S)) can be bounded by a number cχ which is1108

known by an online algorithm with advice for CAPG, then the bound of Theorem 29 adjusts1109

to d|E| · log2(cχ)e bits of advice.1110

Proof. If the color of every edge is encoded by enumerating all possible colorings of the edges1111

from 0 to c|E|χ −1, and and cχ is known to the online algorithm with advice, no self-delimiting1112

encoding is necessary and d|E| · log2(cχ)e advice bits suffice to proceed as in Theorem 29. J1113

Note that this immediately yields a better constant than Theorem 25, since every request1114

has length at least 1, so there are at most |E| − 1 requests left which can be neighboring in1115

the sense of Theorem 28, i.e., χ(Ĝ) ≤ ∆(Ĝ) + 1 ≤ |E|, so already d|E| · log2(|E|)e advice bits1116

are sufficient. However, a short request cannot have many incident paths in a grid, thus this1117

bound is only a rather coarse estimate and can be improved easily as the following corollary1118

shows.1119

I Corollary 31. There is an optimal online algorithm with advice for CAPG that reads at1120

most d|E| · log2( 1
3 (2|E|+ 7))e bits of advice.1121

Proof. Let I ∈ I be an arbitrary instance on a grid G and let S denote the solution1122

minimizing d|E| · log2(χ(Ĝ))e+2dlog2(χ(Ĝ(S)))e. Note that since, according to the definition1123

of Ĝ, the connected components of unused edges in S are split up s.t. χ(Ĝ) is minimized,1124

we can without loss of generality assume that χ(Ĝ) is at most as large as if the respective1125

connected components were split up into paths. Hence, suppose all connected components1126

are paths. Then, for l being the length of such a path p in G, by counting the remaining1127

edges we observe that the number of paths sharing at least one vertex is trivially bounded1128

from above by |E| − l. Moreover, at every inner vertex of p, at most 2 edges not contained1129

in p are incident, so at most 2 other paths can share this vertex and for both outer vertices1130

there is one additional such edge. Thus, a second upper bound on the number of neighbors1131

of vp in Ĝ is given by 2(l+ 1) + 2 = 2(l+ 2). Even in case that both bounds are attained, we1132

have1133

|E| − l = 2(l + 2) ⇐⇒ l = |E| − 4
3 ,1134

1135

so d(vp) ≤ 2(l + 2) ≤ 2
3 (|E|+ 2), and since this holds for all vertices of Ĝ, we conclude that1136

2
3 (|E|+ 2) + 1 ≥ ∆(Ĝ) + 1 ≥ χ(Ĝ). Thus, by Theorem 30 we obtain that there is some online1137

algorithm which uses at most d|E| · log2( 1
3 (2|E|+ 7))e advice bits to compute an optimal1138

solution. J1139

However, as Figure 19 illustrates, on an (n × n)-grid with even n there is an instance1140

s.t. Ĝ contains an n-clique. Since χ(Ĝ) ≥ ω(Ĝ), this implies that with this approach1141

the upper bound cannot be enhanced to less than d|E| · log2(n)e = d|E| · log2(
√
|V |)e =1142

d 1
2 |E| · log2(|E|+ 2n)− 1e ∈ O(|E| · log(|E|)) advice bits. Hence, either this upper bound1143
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Figure 19 On the empty edges of the grid the instance contains requests of length 1 and other
than that there are no further requests. Then, satisfying the shown requests and all requests of
length 1 is the unique optimal solution, and every depicted path has a common vertex of the grid
with every other shown path. Hence, Ĝ has a clique of size at least 6, i.e., in G every shown path
needs to be colored in a different color.

is already asymptotically tight, or we need an advanced method to prove a more compact1144

bound.1145

Nevertheless, for requests of constant maximal length l, also ∆(Ĝ) is bounded by some1146

constant cl, and thus at most d|E| · log2(cl + 1)e ≤ c′l · |E| ∈ O(|E|) advice bits are necessary,1147

for a constant c′l = dlog2(cl + 1)e. Due to Theorem 24, this bound is therefore asymptotically1148

tight, i.e., up tight to a constant factor.1149

I Corollary 32. For instances that only consist of requests with constant maximal length,1150

Θ(|E|) advice bits are both necessary and sufficient. �1151

Furthermore, let us remark that in case of a path instead of a proper grid, we have1152

χ(Ĝ) = 2, and thus up to the additive constant, Theorem 30 constitutes another way of1153

proving the tight upper bound for DPA of |E| − 1 advice bits.1154

However, there might be a way we can significantly improve the result of Theorem 31,1155

since we only need be able to distinguish the end vertices of different satisfied requests, i.e.,1156

to know the borders between the end vertices, and be able to follow the path that is used to1157

satisfy the request. Since at every inner vertex of such a path there are only three possible1158

directions where the path may continue, it seems plausible that we can reduce the number of1159

advice bits.1160

Let us try some sanity check of the extreme cases. First, consider some instance containing1161

only requests of length 1. Then, it is sufficient to know where the requests start and end,1162

but there are no edges where one has to decide in which direction a request should be1163

satisfied. Hence, although a simple greedy algorithm would already be optimal in this1164

case, even encoding the solution completely can be done by coloring used and unused edges1165

of the optimal solution with two distinct colors. Therefore, for the complete encoding,1166

log2(2)|E| = |E| advice bits would be sufficient.1167

On the other side, we can look at instances consisting of arbitrarily long requests with1168

pairwise different end vertices. Then, there is no danger to confuse the start or the end1169

of a request, but we might need to know in which direction a path that satisfies a request1170

continues. For this we could for every edge encode the options to continue in 90, 180 and 2701171

degrees by three different colors, and use one further color to characterize unused edges. Thus,1172
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Figure 20 A part of a solution S(I) is depicted on the left. To the right, there is an example
of the edge-coloring on the rows, where the components restricted to each row are drawn in blue,
and the resulting coloring of the rows is shown in shapes of green. For clarity the coloring of the
columns is omitted.

an encoding of a solution for such an instance would need no more than log2(4)|E| = 2|E|1173

bits.1174

This suggests that combining these two variants might even result in a linear, and hence1175

neglecting the multiplicative constant tight, upper bound for CAPG.1176

I Theorem 33. There is an online algorithm with advice for CAPG that computes an optimal1177

solution using at most 3|E| advice bits.1178

Proof. Let I ∈ I be some instance and let S(I) be some optimal solution for I.1179

First, consider every row and column qi separately. Now, qi may consist of three possible1180

sorts of edges: First of all, edges which remain unused in S(I). Then, there are edges that1181

are connected to an end vertex of a satisfied request of S(I) via edges of qi alone. And finally,1182

there are edges that are used in S(I), but, restricting ourselves to qi, not connected to an end1183

vertex of a satisfied request of S(I). Now, imagine every component that is connected on qi1184

is understood as a separate request when qi gets edge-colored according to q̂i with χ(q̂i) = 21185

colors, where for every row and column the same two colors, e.g., teal and lightgreen, are1186

used (see Figure 20).1187

Note that for those requests that S(I) actually satisfies in a horizontally or vertically1188

aligned manner, this suffices to reconstruct the solution S(I) concerning these requests, since,1189

under the premise that it is known that no request is satisfied in an non-aligned manner1190

(meaning not horizontally or vertically aligned), it is obvious that edges of different rows and1191

columns belong to different satisfied requests (or are unused anyway), and satisfied requests1192

within one row (or column) can be distinguished by the coloring just as in the preceding1193

proofs (first and foremost in Theorem 29). Also, this coloring already achieves that we can1194

distinguish the beginnings (or endings if you mind) of different requests that are satisfied1195

in a non-aligned way, although we might not know which edges are used for such requests.1196

So on every color transition either a request starts/ends or it is continued orthogonal from1197

the current row or column (or S(I) leaves the edge empty). In order to be able to attach1198

sensible meanings to the colors, such as that shades of green establish borders between the1199

end vertices, we will color some edges in multiple hues and merge them to a single color later1200

on.1201

Hence, for all edges that are contained in a non-aligned path used to satisfy a request in1202

S(I), we use a further, distinct color, red. In this way we differentiate between requests that1203

are satisfied horizontally or vertically, and such that are satisfied in a non-aligned form.1204

However, in case multiple red lines cross in some point and their additional green shades1205

do not help to distinguish them, we might not know in which direction the request gets1206

satisfied, i.e., which of the end vertices belong together (e.g., in Figure 21 the crossing1207
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Figure 21 The same instance, solution and coloring as before, supplemented by the red, yellow
and cyan colors indicating the paths of non-aligned satisfied requests.

Figure 22 The complete solution S(I), together with the corresponding coloring on the right.

satisfied requests cannot be reconstructed uniquely from their red colored paths). So far, this1208

is only guaranteed to be clear for horizontally and vertically satisfied requests. Therefore,1209

two more colors, yellow and cyan, get introduced. The meaning of a yellow or cyan edge is1210

that the next edge in clockwise direction belongs to the same path which satisfies a request.1211

For yellow edges, the lower, left vertex of the edge is used as pivot, for cyan ones the opposite1212

vertex. Thus, whenever a satisfied request uses two edges orthogonal to each other, exactly1213

one of them is the appropriate one to be colored yellow or cyan, and otherwise, in case1214

the path goes straight through at this vertex, we conclude this implicitly from the missing1215

additional color (see Figure 21).1216

Now, we are finally able to identify the beginning of a path, and then, to follow the path1217

all the way to the end of it. Note that all edges are colored in one of the two green shapes,1218

perhaps also red, and in case that there is red already possible either yellow or cyan, as well.1219

Therefore, we can view this as an edge-coloring with “colors” lightgreen, teal, (lightgreen,1220

red), (teal, red), (lightgreen, red, yellow), (teal, red, yellow), (lightgreen, red, cyan), (teal,1221

red, cyan), yielding eight colors. Since the number of colors, and thus the number of needed1222

bits per color, is settled, the oracle does not need to encode this number. Hence, considering1223

any arbitrary, but fixed order of the edges, the oracle can write the color of each edge on the1224

advice tape using log2(8)|E| = 3|E| bits. Then, there is some online algorithm Alg with1225

advice for CAPG that reads these bits and reconstructs the coloring.1226

Then, on an incoming request, Alg checks whether the end vertices lie on the border1227

between a lightgreen and a teal edge, and rejects if not. In case that the request can be1228

satisfied with a horizontally or vertically aligned path, Alg examines whether all edges of1229

the respective row or column that lie between the end vertices have the same green shape,1230

and accepts it in that way if so. Otherwise, Alg verifies whether there is a path indicated by1231

the red color, that matches on the end vertices and whose bends comply with the definition1232

of the yellow and cyan colors. If that is the case, Alg grants the request according to this1233
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Figure 23 The dashed, blue lines indicate formerly satisfied requests. For a start vertex of a path,
N, l, u, r, d are interpreted as “not satisfied”, “left”, “upwards”, “right”, or respectively “downwards”,
and, for an inner vertex v, l, s, r are interpreted as “left”, “straight” and “right” with respect to the
incoming edge at v. Then, on an incoming request ((1, 1), (2, 5)) the string usrsl translates to the
depicted path.

established path. Obviously, Alg satisfies exactly the requests that are satisfied in S(I), and1234

hence, Alg is optimal reading only 3|E| bits of advice. J1235

As we are now able to realize, the proof is quite close to a simple combination of the1236

principles used to solve the extreme cases and indeed results in the plain addition of the1237

encoding sizes.1238

One can continue along the same line of reasoning to obtain a slightly different result,1239

bounding the number of advice bits from above in the number of requests: It is sufficient to1240

know for every request whether it has been taken and then to be able to follow the request1241

until its end, in order to reconstruct an optimal solution. Hence, for the first vertex of a1242

request, the oracle can encode whether to reject it or one of the four directions to start, and,1243

for every inner vertex of the path that satisfies the request, the oracle can encode one of the1244

three directions left, straight, or right to continue. Moreover, given that, for a path satisfying1245

a request, the incoming direction for a vertex v is known and already two incident edges of v1246

are used to satisfy another request, there is only one direction left, so there is no additional1247

information needed for v. In other words, for a particular solution, every vertex used as an1248

inner vertex of any path satisfying a request only needs advice once (see Figure 23). The1249

next theorem makes this observation rigorous.1250

I Theorem 34. Let I denote all possible instances of CAPG on a grid G = (V,E), let1251

Sopt(I) be the set of optimal solutions for an instance I ∈ I, and let Vinner(S) ⊆ V be the1252

set of inner vertices of the paths used to satisfy requests in a solution S ∈ Sopt(I). Then,1253

there is an optimal online algorithm with advice for CAPG that uses at most1254

min
S∈Sopt(I)

a(k, |Vinner(S)|)1255

1256

advice bits, where1257

a(k, |V |) = dlog2(5) · k + log2(3) · |V |e+ d2 log2(k)e+ d2 log2(|V |)e,1258
1259

and k is the number of requests in I.1260

Proof. Given an instance I ∈ I, the oracle can compute all optimal solutions Sopt(I) and1261

choose one S ∈ Sopt(I) that minimizes a(k, |Vinner(S)|). Further, recalling the numbering of1262

the vertices of G (see Theorem 4), we consider an ordering Q of the vertices from lower-left1263

vertices to upper-right ones, i.e., a vertex va,b ∈ V precedes another vertex vx,y ∈ V if and1264
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only if a < x ∨ (a = x ∧ b < y). Note that this ordering induces a direction for paths, where1265

the path starts at the outer vertex coming first in the ordering and ends at the other outer1266

vertex.1267

Then, the oracle creates a string t in the following way: It starts from an empty string.1268

For every request r in I, first, an N is appended if the request gets rejected in S, and else,1269

in case r gets granted via a path p, the oracle appends either an l, u, r, or d depending1270

on whether the first edge of it lies to the left, points upwards, to the right, or downwards,1271

relative to the start vertex of p. Secondly, the oracle traverses p and for every inner vertex1272

v ∈ Vinner(S) it verifies whether v is already an inner vertex of another path p′ used to satisfy1273

a preceding request. If so, the oracle continues with the next vertex. Otherwise, it adds1274

either an l, s, or r to t, according to whether p continues to the left, straight, or to the right1275

relative to the incoming edge of p at v.1276

Hence, overall the oracle constructs a string of length k + |Vinner(S)|. Since there are1277

at most |{N, l, u, r, d}|k · |{l, s, r}||Vinner(S)| = 5k · 3|Vinner(S)| such strings (not all of these1278

combinations are valid constructions), the oracle can enumerate them from 0 to at most1279

5k · 3|Vinner(S)| in any arbitrary, but fixed order, and write the index of t on the advice tape.1280

For this, dlog2(5k ·3|Vinner(S)|)e = dlog2(5) ·k+log2(3) · |Vinner(S)|e bits are sufficient. In order1281

to convey k and |Vinner(S)| at the very beginning of the advice tape using a self-delimiting1282

encoding, no more than d2 log2(k)e+ d2 log2(|Vinner(S)|)e bits are used (see Subsection 2.4).1283

Therefore, in total, the oracle writes a(k, |Vinner(S)|) bits of advice on the dedicated tape.1284

Now, there is an online algorithm Alg with advice for CAPG that reads the advice bits1285

encoding k and |Vinner(S)|, calculates a(k, |Vinner(S)|), and reads that many advice bits. By1286

considering the same enumeration of the strings as the oracle, Alg is able to reconstruct1287

t. Then, it proceeds in the following manner: For every incoming request r, Alg reads the1288

next character c from t. If c = N , then Alg rejects r, and else, r gets satisfied in S with1289

a path p and c ∈ {l, u, r, d} indicates the direction of the first edge of p. Hence, Alg can1290

traverse this edge arriving at a vertex v. Imagine the current v is not the end vertex of r. If1291

v has been an inner vertex of a path p′ used previously by Alg to satisfy another request,1292

then subtracting the traversed edge, there is only one edge left, so the direction in which p1293

continues is clear. Otherwise, Alg obtains the direction from reading the next character1294

c ∈ {l, s, r} of t. Either way, Alg traverses the next edge of p arriving at a new vertex, which1295

it takes as new v and repeats the former steps. If v is the second end vertex of p, Alg has1296

learned the whole path p and satisfies r accordingly.1297

Clearly, Alg reads the first a(k, |Vinner(S)|) bits of advice and recomputes the optimal1298

solution S. J1299

Let us remark that this proof exploits the order of requests in I, since only at the first1300

time that some vertex v is an inner vertex of some path used to satisfy a request of I, advice1301

has to be given. The following corollary follows immediately, since Vinner(S) ⊆ V and |V | is1302

known by the algorithm, and is more applicable considering how difficult it is to establish1303

the exact cardinality of Vinner(S) as a function of k or |E|.1304

I Corollary 35. Let I denote all possible instances of CAPG on a grid G = (V,E), and1305

let Sopt(I) be the set of optimal solutions for an instance I ∈ I. Then, there is an optimal1306

online algorithm with advice for CAPG that uses at most1307

dlog2(5) · k + log2(3) · |V |e+ d2 log2(k)e1308
1309

advice bits, where k is the number of requests in I. �1310
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Naturally, the question arises for which k Theorem 35 constitutes a better upper bound1311

than Theorem 33. Therefore, by omitting low order terms for simplicity, and since one bound1312

monotonically increases in k, while the other one is constant in k, the threshold is given by1313

the solution of log2(5) · k + log2(3) · |V | != 3 · |E| with respect to k, which results in1314

k = 3|E| − log2(3)|V |
log2(5) = (6− log2(3))|E| − log2(3)(m+ n)

2 log2(5) .1315

1316

Hence, for fewer than approximately 0.95|E| − 0.34(m+ n) requests, Theorem 35 is indeed1317

an improvement, otherwise (e.g., in the worst case of both bounds) Theorem 33 yields the1318

stronger result, since there can be up to
(|V |

2
)

= 1
8 (|E| + m + n − 1)2 − 1

8 requests in an1319

instance.1320

4 Conclusion1321

As desired we showed lower and upper bounds for the number of advice bits concerning opti-1322

mality, and also examined the case of suboptimal algorithms achieving a certain competitive1323

ratio.1324

With a lower bound of m · log2(tn) + n · log2(tm) > 0.94677 · |E| −m− n advice bits (see1325

Theorem 23 and Theorem 24) and an upper bound of 3|E| advice bits (see Theorem 33) in the1326

general case, the results regarding optimality are already fairly close. However, though this1327

shows that CAPG is roughly as hard as DPA, so far the bounds are not tight and in particular1328

it is still open whether CAPG needs strictly more advice than DPA. Since hitherto, in our1329

best lower bound, we solely consider horizontally or vertically aligned requests, respectively,1330

one natural attempt to prove a stronger result would be to additionally include non-aligned1331

requests as well. For example, we could examine all aligned requests of length at most 2 and1332

then possibly extend some of these requests with an orthogonal edge at one or both of its1333

end vertices. Then this would again result in requests of length at most 4. Note that, at1334

each end vertex, there are two orthogonal choices to extend the request (except for some1335

corner cases), thus this yields a significant growth of the degrees of freedom to construct an1336

instance, i.e., the total number of such instances rises considerably. Unfortunately, already1337

the requests constructed from horizontal requests may cover the whole grid, so, in some1338

cases, the optimal solution would not contain any request constructed from vertical ones.1339

Similarly, the extension of requests on the same row or on neighboring rows can overlap.1340

Hence, it is rather difficult to establish the number of optimal solutions per instance, or the1341

optimal solutions overall. At the same time, it also seems to be hard to find a subset of such1342

instances that can be analyzed with a reasonable effort and still is large enough to improve1343

on our result. Therefore, capturing the essential difference between CAPG and DPA in a1344

lower bound remains unsolved.1345

Another interesting thought one could pursue in more detail is that most of our upper1346

bounds seem to be easily generalizable to other graphs. For example, a cycle graph as1347

underlying network has χ(Ĝ) ≤ 3, so by Theorem 30, we instantly obtain an upper bound1348

of dlog2(3)|E|e advice bits for optimality. On the other hand, without loss of generality, we1349

may assume that a request of length 1 is granted by every optimal solution, and although1350

there are two possibilities to satisfy such a request in a cycle graph, recalling that no request1351

repeats, we may assume the path of length 1 is actually used. Then, granting the request1352

“cuts” the cycle in a path of length |E| − 1, so using the tight lower bound for DPA on this1353

subgraph, we obtain that at least |E| − 2 advice bits are necessary to compute an optimal1354

solution. Hence, the upper bound is already tight up to a constant factor.1355
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The universal character of most of the upper bounds suggests that similar contemplations1356

are possible for a large number of underlying graphs, especially related ones such as cylinder1357

and torus graphs.1358
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